
Protecting the Android TCB with SELinux

Stephen Smalley
Trusted Systems Research
National Security Agency

2

Background
• At LSS 2013, SELinux was:

– shipping in the Samsung Galaxy S4 smartphone, and
– included in the Google Android 4.3 release,
– but was in permissive mode by default.

• SELinux went enforcing in:
– 4.3 updates to S4 and other Samsung devices, and
– the Google Android 4.4 / KitKat release.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

3

Today's Talk
• Looking at how SELinux has been applied over

the past year to protect the Android Trusted
Computing Base (TCB).

• All of these changes have been made in the
Android Open Source Project (AOSP) master
branch.

• Starting from the 4.4 release and then looking at
what we expect to be in the upcoming Android
“L” release.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

4

The Android TCB
• The Linux kernel.
• Full-root daemons, e.g. init/ueventd, vold, netd, debuggerd, zygote, ...
• Non-root daemons with capabilities.

– Particularly installd and system_server.
– Those with more limited capabilities, e.g. wpa_supplicant, rild, ...

• Other system UID daemons, e.g. servicemanager, surfaceflinger, ...
• Subsystem-specific daemons, e.g. sdcard, keystore, ...
• To a lesser extent, certain system apps.

– Applications with platform UIDs, e.g. system, radio, ...
– Platform-signed or /system/priv-app apps.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

5

Android TCB Protection pre-SELinux
● mmap_min_addr, dmesg_restrict, kptr_restrict
● Root daemon minimization.
● Selective capabilities reduction, e.g. installd.
● Per-subsystem UIDs, e.g. radio, nfc, bluetooth, media.
● Per-app UIDs.
● Blocking privilege escalation by apps (NOSUID, CAPBSET_DROP,

NO_NEW_PRIVS).
● Read-only /system mount.
● NX/XN, ASLR, PIE, RELRO, FORTIFY_SOURCE, ...

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

6

• First Google Android release to ship with SELinux
enforcing by default.

• Focused on protecting a set of root daemons.
– installd, netd, vold, zygote.
– Protect from misuse, contain damage from exploit.

• Prevented exploitation of a long-standing (since 2010)
local root vulnerability in Android vold, fixed in 4.4.3.

– Similar to various other Android root exploits blocked
by SELinux, see our prior papers/presentations.

SELinux in Android 4.4 / KitKat

7

• Unlike in conventional Linux distributions...
• SELinux enabled and enforcing is mandatory.

– Required by Android CDD and CTS for >= 4.4.
• There is no generic unconfined domain.

– But specific domains can be marked with the
unconfineddomain attribute.

– Even such domains are not completely
unrestricted by SELinux.

Android SELinux Distinctives

8

• In parallel:
– Shrink the set of unconfined domains.

● Converging to fully confined.
– Shrink the set of permissions allowed even to

unconfined domains.
– Targeted improvements to confined domains.

● Focusing on TCB protection.

Post-4.4 SELinux Strategy

9

• 4 (out of 47) in Android 4.4.
– The previously mentioned root daemons.

• 49 (out of 61) in Android L Developer Preview.
– Including all third party apps.

• 62 (out of 65) in AOSP master.
– Everything except for kernel, init, init_shell.

• (for Nexus 5 -user build)

Confined Domains

10

• No domain can map low memory.
• No domain can read/write /dev/kmem or

/dev/mem.
• Only init can modify proc security settings

(kptr_restrict, mmap_min_addr,
dmesg_restrict, ...).

• Only init can load/reload SELinux policy.
• No domain can switch SELinux to permissive.
• Not even unconfined domains!

Protecting the Kernel

11

• In Nexus devices, CONFIG_MODULES=n.
• Some devices include module support.
• Removed sys_module from unconfineddomain.
• Only presently allowed to system_server.

– To support loading of wireless driver.
• Possible future extension: limit module loading to

modules from rootfs or /system only.
– But this requires a newer Android kernel.
– and a selinux_kernel_module_from_file hook.

Protecting the Kernel: Loadable Modules

12

• Only init can set or configure kernel usermodehelpers.
– e.g. /sys/kernel/uevent_helper,

/proc/sys/kernel/hotplug,
/proc/sys/kernel/usermodehelper/bset, ...

• Kernel usermodehelpers can only be executed from the
rootfs or /system.
– Never from /data or /cache.

• Kernel usermodehelpers must transition to a domain
other than the kernel domain.
– Not allowed to retain kernel domain's permissions.

Protecting the Kernel: Usermode Helpers

13

• /system already mounted read-only.
• (Re)mounting filesystems restricted to minimal set of

domains and types.
• Write access to /system only allowed to recovery.
• Context= mounts can only be used to assign a non-

writable type to a filesystem.
• Writing to block devices restricted to minimal set of

domains and types.
• Raw I/O and mknod capabilities restricted to minimal set

of domains.
• All of these accesses removed from unconfineddomain.

Protecting OS File Integrity

14

• Only debuggerd is allowed to ptrace other
domains.

• Most domains have no ptrace access at all.
– Not allowed by default intra-domain.
– Not even allowed to unconfined domains.

• ptrace to init and keystore prohibited by
neverallow.

• ptrace by app to non-app prohibited by
neverallow.

Protecting System Services: Ptrace

15

• rootfs files cannot be written at all.
• /system can only be written from recovery.
• For most domains, no execute to files outside

of the rootfs or /system partitions.
• For most domains, no PROT_EXEC anonymous

mappings or modified private file mappings.
• Removed from unconfineddomain as well.

Protecting System Services: W^X

16

• Preventing malicious symlink attacks.
– No reading symlinks created by apps or

shell.
– Not even by unconfineddomain.

• Protecting against malicious socket IPC.
– Preventing use of netlink sockets and

daemon sockets by apps or shell.

Protecting System Services: Malicious Input

17

• installd is responsible for various aspects of /data
management, including upgrading the layout,
populating the dalvik cache, creating app data
directories.

• As a result, our original policy (and 4.4) allowed it
fairly sweeping write access to directories and files
under /data.

• In AOSP master, installd is restricted to only the /data
file types and permissions needed and files it creates
are placed in their own type.

• Can no longer write to arbitrary system data.

Protecting Data File Integrity

18

• system_server is responsible for managing large parts
of /data at runtime.

• Our original policy confined it but allowed it to
read/write all types under /data. Android 4.4
shipped it unconfined.

• In AOSP master, system_server is restricted to only
the /data file types and permissions needed.

– No longer can access e.g. keystore, tee, drm data.
• One of only two confined domains that can write to

the generic system_data_file type.

Protecting Data File Integrity (cont'd)

19

• /data/property: Persistent system property store.
– Can only be read/written by init.

• /data/misc/keystore: Certificate and (encrypted) key
store.

– Can only be read/written by keystore.
• Not even allowed to unconfined domains.

Protecting Security-Critical Data Files

20

• Removing access to app data files.
– Also helps protect daemons from malicious

inputs.
– Where necessary, try to avoid open access.

• Removing SDcard access.

– Also protects daemons from being killed by
unsafe ejection.

• Limiting daemons to specific partitions.

Protecting User Data from Rogue Daemons

21

• Removed from unconfineddomain, but may be
allowed to specific domains.

• No process operations on other domains (e.g.
signals).

• No transitions to other domains.
• No executing other programs without transitioning.
• No internet access.
• No syslog access.
• No audit capabilities.
• No MAC capabilities.

Other Unconfined Lockdown

22

• What policy takes away, policy can give back
again..

• Particularly need to consider device-specific
policy and OEM customizations.

• Preserving in AOSP: neverallow rules
• Preserving in devices: Android CTS test

– SELinuxTest
– SELinuxDomainTest

Preserving TCB Protection Goals

23

• Removing need for Linux capabilities from various
daemons.
– e.g. clatd, various qcom daemons

• Removing need for kmem access.
– rmt_storage, rewritten to use uio.

• Detecting and eliminating descriptor leaks.
– Sockets/pipes inherited across fork/exec.

• Detecting and eliminating text relocations.

More than Status Quo Encapsulation

24

• SELinux is extensible for userspace policy
enforcers (aka userspace object managers).

• Just define object classes and permissions in
policy and call selinux_check_access() from
your own code.

• Handles mapping classes/permissions from
strings to values, auditing denials, caching
decisions, flushing cache on policy reload, ...

Going Beyond the Kernel

25

• In 4.4, applied to property service and zygote.
• In AOSP master:

– Extended to servicemanager, keystore, drmserver,
debuggerd.

– Replacing legacy hardcoded UID-based ACLs.
• Benefits:

– Configurable, centralized policy.
– Distinguish at finer granularity than UID.
– Can control even root processes.
– Centralized, uniform audit.

Going Beyond the Kernel (cont'd)

26

• Handling upgrades from non-SE (unlabeled)
devices and from older policies.
– Automatic relabel, triggered by change in

file_contexts configuration.
• Enabling efficient, complete labeling of sysfs.

– Prune tree walk as early as possible (partial
matching support in selabel).

– Check/relabel on add/change/online uevents.

Overcoming Practical Challenges

27

• Labeling devices based on stable names.
– Daemon needs read/write access to a specific

partition.
– Partition number and thus real device node name can

vary across devices.
– Partition name is stable.
– Label-by-symlink support using

/dev/block/platform/<device>/by-name symlinks.
– Best match support in selabel.

Overcoming Practical Challenges (cont'd)

28

• Automating new device bringup
• New APIs for apps (isolation, sandboxing, ...)
• Hardening Android multi-user
• Enterprise Ops / IntentFirewall
• Improved CTS testing
• Further policy hardening

What's Next

29

• Send email to seandroid-list-join@tycho.nsa.gov to
join the public SE for Android mailing list.

• Private email just to our SE for Android team:
seandroid@tycho.nsa.gov

• Source code: https://bitbucket.org/seandroid
• Project page: http://seandroid.bitbucket.org

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

