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Background
• At LSS 2013, SELinux was:

– shipping in the Samsung Galaxy S4 smartphone, and
– included in the Google Android 4.3 release,
– but was in permissive mode by default.

• SELinux went enforcing in:
– 4.3 updates to S4 and other Samsung devices, and
– the Google Android 4.4 / KitKat  release.
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Today's Talk
• Looking at how SELinux has been applied over 

the past year to protect the Android Trusted 
Computing Base (TCB).

• All of these changes have been made in the 
Android Open Source Project (AOSP) master 
branch.

• Starting from the 4.4 release and then looking at 
what we expect to be in the upcoming Android 
“L” release.
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The Android TCB
• The Linux kernel.
• Full-root daemons, e.g. init/ueventd, vold, netd, debuggerd, zygote, ...
• Non-root daemons with capabilities.

– Particularly installd and system_server.
– Those with more limited capabilities, e.g. wpa_supplicant, rild, ...

• Other system UID daemons, e.g. servicemanager, surfaceflinger, ...
• Subsystem-specific daemons, e.g. sdcard, keystore, ...
• To a lesser extent, certain system apps.

– Applications with platform UIDs, e.g. system, radio, ...
– Platform-signed or /system/priv-app apps.
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Android TCB Protection pre-SELinux
● mmap_min_addr, dmesg_restrict, kptr_restrict
● Root daemon minimization.
● Selective capabilities reduction, e.g. installd.
● Per-subsystem UIDs, e.g. radio, nfc, bluetooth, media.
● Per-app UIDs.
● Blocking privilege escalation by apps (NOSUID, CAPBSET_DROP, 

NO_NEW_PRIVS).
● Read-only /system mount.
● NX/XN, ASLR, PIE, RELRO, FORTIFY_SOURCE, ...
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• First Google Android release to ship with SELinux 
enforcing by default.

• Focused on protecting a set of root daemons.
– installd, netd, vold, zygote.
– Protect from misuse, contain damage from exploit.

• Prevented exploitation of a long-standing (since 2010) 
local root vulnerability in Android vold, fixed in 4.4.3.

– Similar to various other Android root exploits blocked 
by SELinux, see our prior papers/presentations.

SELinux in Android 4.4 / KitKat
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• Unlike in conventional Linux distributions...
• SELinux enabled and enforcing is mandatory.

– Required by Android CDD and CTS for >= 4.4.
• There is no generic unconfined domain.

– But specific domains can be marked with the 
unconfineddomain attribute.

– Even such domains are not completely 
unrestricted by SELinux.

Android SELinux Distinctives
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• In parallel:
– Shrink the set of unconfined domains.

● Converging to fully confined.
– Shrink the set of permissions allowed even to 

unconfined domains.
– Targeted improvements to confined domains.

● Focusing on TCB protection.

Post-4.4 SELinux Strategy
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• 4 (out of 47) in Android 4.4.
– The previously mentioned root daemons.

• 49 (out of 61) in Android L Developer Preview.
– Including all third party apps.

• 62 (out of 65) in AOSP master.
– Everything except for kernel, init, init_shell.

• (for Nexus 5 -user build)

Confined Domains
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• No domain can map low memory.
• No domain can read/write /dev/kmem or 

/dev/mem.
• Only init can modify proc security settings 

(kptr_restrict, mmap_min_addr, 
dmesg_restrict, ...).

• Only init can load/reload SELinux policy.
• No domain can switch SELinux to permissive.
• Not even unconfined domains!

Protecting the Kernel
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• In Nexus devices, CONFIG_MODULES=n.
• Some devices include module support.
• Removed sys_module from unconfineddomain.
• Only presently allowed to system_server.

– To support loading of wireless driver.
• Possible future extension:  limit module loading to 

modules from rootfs or /system only.
– But this requires a newer Android kernel.
– and a selinux_kernel_module_from_file hook.

Protecting the Kernel: Loadable Modules
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• Only init can set or configure kernel usermodehelpers.
– e.g. /sys/kernel/uevent_helper, 

/proc/sys/kernel/hotplug, 
/proc/sys/kernel/usermodehelper/bset, ...

• Kernel usermodehelpers can only be executed from the 
rootfs or /system.
– Never from /data or /cache.

• Kernel usermodehelpers must transition to a domain 
other than the kernel domain.
– Not allowed to retain kernel domain's permissions.

Protecting the Kernel: Usermode Helpers
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• /system already mounted read-only.
• (Re)mounting filesystems restricted to minimal set of 

domains and types.
• Write access to /system only allowed to recovery.
• Context= mounts can only be used to assign a non-

writable type to a filesystem.
• Writing to block devices restricted to minimal set of 

domains and types.
• Raw I/O and mknod capabilities restricted to minimal set 

of domains.
• All of these accesses removed from unconfineddomain.

Protecting OS File Integrity
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• Only debuggerd is allowed to ptrace other 
domains.

• Most domains have no ptrace access at all.
– Not allowed by default intra-domain.
– Not even allowed to unconfined domains.

• ptrace to init and keystore prohibited by 
neverallow.

• ptrace by app to non-app prohibited by 
neverallow.

Protecting System Services: Ptrace
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• rootfs files cannot be written at all.
• /system can only be written from recovery.
• For most domains, no execute to files outside 

of the rootfs or /system partitions.
• For most domains, no PROT_EXEC anonymous 

mappings or modified private file mappings.
• Removed from unconfineddomain as well.

Protecting System Services: W^X
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• Preventing malicious symlink attacks.
– No reading symlinks created by apps or 

shell.
– Not even by unconfineddomain.

• Protecting against malicious socket IPC.
– Preventing use of netlink sockets and 

daemon sockets by apps or shell.

Protecting System Services: Malicious Input
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• installd is responsible for various aspects of /data 
management, including upgrading the layout, 
populating the dalvik cache, creating app data 
directories.

• As a result, our original policy (and 4.4) allowed it 
fairly sweeping write access to directories and files 
under /data.

• In AOSP master,  installd is restricted to only the /data 
file types and permissions needed and files it creates 
are placed in their own type.

• Can no longer write to arbitrary system data.

Protecting Data File Integrity
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• system_server is responsible for managing large parts 
of /data at runtime.

• Our original policy confined it but allowed it to 
read/write all types under /data.  Android 4.4 
shipped it unconfined.

• In AOSP master, system_server is restricted to only 
the /data file types and permissions needed.

– No longer can access e.g. keystore, tee, drm data.
• One of only two confined domains that can write to 

the generic system_data_file type.

Protecting Data File Integrity (cont'd)
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• /data/property: Persistent system property store.
– Can only be read/written by init.

• /data/misc/keystore: Certificate and (encrypted) key 
store.

– Can only be read/written by keystore.
• Not even allowed to unconfined domains.

Protecting Security-Critical Data Files
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• Removing access to app data files.
– Also helps protect daemons from malicious 

inputs.
– Where necessary, try to avoid open access.

• Removing SDcard access.

– Also protects daemons from being killed by 
unsafe ejection.

• Limiting daemons to specific partitions.

Protecting User Data from Rogue Daemons



21

• Removed from unconfineddomain, but may be 
allowed to specific domains.

• No process operations on other domains (e.g. 
signals).

• No transitions to other domains.
• No executing other programs without transitioning.
• No internet access.
• No syslog access.
• No audit capabilities.
• No MAC capabilities.

Other Unconfined Lockdown
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• What policy takes away, policy can give back 
again..

• Particularly need to consider device-specific 
policy and OEM customizations.

• Preserving in AOSP: neverallow rules
• Preserving in devices: Android CTS test

– SELinuxTest
– SELinuxDomainTest

Preserving TCB Protection Goals
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• Removing need for Linux capabilities from various 
daemons.
– e.g. clatd, various qcom daemons

• Removing need for kmem access.
– rmt_storage, rewritten to use uio.

• Detecting and eliminating descriptor leaks.
– Sockets/pipes inherited across fork/exec.

• Detecting and eliminating text relocations.

More than Status Quo Encapsulation
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• SELinux is extensible for userspace policy 
enforcers (aka userspace object managers).

• Just define object classes and permissions in 
policy and call selinux_check_access() from 
your own code.

• Handles mapping classes/permissions from 
strings to values, auditing denials, caching 
decisions, flushing cache on policy reload, ...

Going Beyond the Kernel
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• In 4.4, applied to property service and zygote.
• In AOSP master:

– Extended to servicemanager, keystore, drmserver, 
debuggerd.

– Replacing legacy hardcoded UID-based ACLs.
• Benefits:

– Configurable, centralized policy.
– Distinguish at finer granularity than UID.
– Can control even root processes.
– Centralized, uniform audit.

Going Beyond the Kernel (cont'd)
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• Handling upgrades from non-SE (unlabeled) 
devices and from older policies.
– Automatic relabel, triggered by change in 

file_contexts configuration.
• Enabling efficient, complete labeling of sysfs.

– Prune tree walk as early as possible (partial 
matching support in selabel).

– Check/relabel on add/change/online uevents.

Overcoming Practical Challenges
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• Labeling devices based on stable names.
– Daemon needs read/write access to a specific 

partition.
– Partition number and thus real device node  name can 

vary across devices.
– Partition name is stable.
– Label-by-symlink support using 

/dev/block/platform/<device>/by-name symlinks.
– Best match support in selabel.

Overcoming Practical Challenges (cont'd)
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• Automating new device bringup
• New APIs for apps (isolation, sandboxing, ...)
• Hardening Android multi-user
• Enterprise Ops / IntentFirewall
• Improved CTS testing
• Further policy hardening

What's Next
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• Send email to seandroid-list-join@tycho.nsa.gov to 
join the public SE for Android mailing list.

• Private email just to our SE for Android team: 
seandroid@tycho.nsa.gov

• Source code: https://bitbucket.org/seandroid
• Project page: http://seandroid.bitbucket.org

Questions?
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