[PATCH bpf-next v3 07/11] bpf: Fix a false rejection caused by AND operation

Xu Kuohai xukuohai at huaweicloud.com
Fri Apr 26 07:43:31 UTC 2024


On 4/26/2024 12:28 AM, Yonghong Song wrote:
> 
> On 4/24/24 7:42 PM, Xu Kuohai wrote:
>> On 4/25/2024 6:06 AM, Yonghong Song wrote:
>>>
>>> On 4/23/24 7:25 PM, Xu Kuohai wrote:
>>>> On 4/24/2024 5:55 AM, Yonghong Song wrote:
>>>>>
>>>>> On 4/20/24 1:33 AM, Xu Kuohai wrote:
>>>>>> On 4/20/2024 7:00 AM, Eduard Zingerman wrote:
>>>>>>> On Thu, 2024-04-11 at 20:27 +0800, Xu Kuohai wrote:
>>>>>>>> From: Xu Kuohai <xukuohai at huawei.com>
>>>>>>>>
>>>>>>>> With lsm return value check, the no-alu32 version test_libbpf_get_fd_by_id_opts
>>>>>>>> is rejected by the verifier, and the log says:
>>>>>>>>
>>>>>>>>    0: R1=ctx() R10=fp0
>>>>>>>>    ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
>>>>>>>>    0: (b7) r0 = 0                        ; R0_w=0
>>>>>>>>    1: (79) r2 = *(u64 *)(r1 +0)
>>>>>>>>    func 'bpf_lsm_bpf_map' arg0 has btf_id 916 type STRUCT 'bpf_map'
>>>>>>>>    2: R1=ctx() R2_w=trusted_ptr_bpf_map()
>>>>>>>>    ; if (map != (struct bpf_map *)&data_input) @ test_libbpf_get_fd_by_id_opts.c:29
>>>>>>>>    2: (18) r3 = 0xffff9742c0951a00       ; R3_w=map_ptr(map=data_input,ks=4,vs=4)
>>>>>>>>    4: (5d) if r2 != r3 goto pc+4         ; R2_w=trusted_ptr_bpf_map() R3_w=map_ptr(map=data_input,ks=4,vs=4)
>>>>>>>>    ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
>>>>>>>>    5: (79) r0 = *(u64 *)(r1 +8)          ; R0_w=scalar() R1=ctx()
>>>>>>>>    ; if (fmode & FMODE_WRITE) @ test_libbpf_get_fd_by_id_opts.c:32
>>>>>>>>    6: (67) r0 <<= 62                     ; R0_w=scalar(smax=0x4000000000000000,umax=0xc000000000000000,smin32=0,smax32=umax32=0,var_off=(0x0; 0xc000000000000000))
>>>>>>>>    7: (c7) r0 s>>= 63                    ; R0_w=scalar(smin=smin32=-1,smax=smax32=0)
>>>>>>>>    ;  @ test_libbpf_get_fd_by_id_opts.c:0
>>>>>>>>    8: (57) r0 &= -13                     ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3))
>>>>>>>>    ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
>>>>>>>>    9: (95) exit
>>>>>>>>
>>>>>>>> And here is the C code of the prog.
>>>>>>>>
>>>>>>>> SEC("lsm/bpf_map")
>>>>>>>> int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode)
>>>>>>>> {
>>>>>>>>     if (map != (struct bpf_map *)&data_input)
>>>>>>>>         return 0;
>>>>>>>>
>>>>>>>>     if (fmode & FMODE_WRITE)
>>>>>>>>         return -EACCES;
>>>>>>>>
>>>>>>>>     return 0;
>>>>>>>> }
>>>>>>>>
>>>>>>>> It is clear that the prog can only return either 0 or -EACCESS, and both
>>>>>>>> values are legal.
>>>>>>>>
>>>>>>>> So why is it rejected by the verifier?
>>>>>>>>
>>>>>>>> The verifier log shows that the second if and return value setting
>>>>>>>> statements in the prog is optimized to bitwise operations "r0 s>>= 63"
>>>>>>>> and "r0 &= -13". The verifier correctly deduces that the the value of
>>>>>>>> r0 is in the range [-1, 0] after verifing instruction "r0 s>>= 63".
>>>>>>>> But when the verifier proceeds to verify instruction "r0 &= -13", it
>>>>>>>> fails to deduce the correct value range of r0.
>>>>>>>>
>>>>>>>> 7: (c7) r0 s>>= 63                    ; R0_w=scalar(smin=smin32=-1,smax=smax32=0)
>>>>>>>> 8: (57) r0 &= -13                     ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3))
>>>>>>>>
>>>>>>>> So why the verifier fails to deduce the result of 'r0 &= -13'?
>>>>>>>>
>>>>>>>> The verifier uses tnum to track values, and the two ranges "[-1, 0]" and
>>>>>>>> "[0, -1ULL]" are encoded to the same tnum. When verifing instruction
>>>>>>>> "r0 &= -13", the verifier erroneously deduces the result from
>>>>>>>> "[0, -1ULL] AND -13", which is out of the expected return range
>>>>>>>> [-4095, 0].
>>>>>>>>
>>>>>>>> To fix it, this patch simply adds a special SCALAR32 case for the
>>>>>>>> verifier. That is, when the source operand of the AND instruction is
>>>>>>>> a constant and the destination operand changes from negative to
>>>>>>>> non-negative and falls in range [-256, 256], deduce the result range
>>>>>>>> by enumerating all possible AND results.
>>>>>>>>
>>>>>>>> Signed-off-by: Xu Kuohai <xukuohai at huawei.com>
>>>>>>>> ---
>>>>>>>
>>>>>>> Hello,
>>>>>>>
>>>>>>> Sorry for the delay, I had to think about this issue a bit.
>>>>>>> I found the clang transformation that generates the pattern this patch
>>>>>>> tries to handle.
>>>>>>> It is located in DAGCombiner::SimplifySelectCC() method (see [1]).
>>>>>>> The transformation happens as a part of DAG to DAG rewrites
>>>>>>> (LLVM uses several internal representations:
>>>>>>>   - generic optimizer uses LLVM IR, most of the work is done
>>>>>>>     using this representation;
>>>>>>>   - before instruction selection IR is converted to Selection DAG,
>>>>>>>     some optimizations are applied at this stage,
>>>>>>>     all such optimizations are a set of pattern replacements;
>>>>>>>   - Selection DAG is converted to machine code, some optimizations
>>>>>>>     are applied at the machine code level).
>>>>>>>
>>>>>>> Full pattern is described as follows:
>>>>>>>
>>>>>>>    // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A)
>>>>>>>    // where y is has a single bit set.
>>>>>>>    // A plaintext description would be, we can turn the SELECT_CC into an AND
>>>>>>>    // when the condition can be materialized as an all-ones register.  Any
>>>>>>>    // single bit-test can be materialized as an all-ones register with
>>>>>>>    // shift-left and shift-right-arith.
>>>>>>>
>>>>>>> For this particular test case the DAG is converted as follows:
>>>>>>>
>>>>>>>                      .---------------- lhs         The meaning of this select_cc is:
>>>>>>>                      |        .------- rhs         `lhs == rhs ? true value : false value`
>>>>>>>                      |        | .----- true value
>>>>>>>                      |        | |  .-- false value
>>>>>>>                      v        v v  v
>>>>>>>    (select_cc seteq (and X 2) 0 0 -13)
>>>>>>>                            ^
>>>>>>> ->                        '---------------.
>>>>>>>    (and (sra (sll X 62) 63)                |
>>>>>>>         -13)                               |
>>>>>>>                                            |
>>>>>>> Before pattern is applied, it checks that second 'and' operand has
>>>>>>> only one bit set, (which is true for '2').
>>>>>>>
>>>>>>> The pattern itself generates logical shift left / arithmetic shift
>>>>>>> right pair, that ensures that result is either all ones (-1) or all
>>>>>>> zeros (0). Hence, applying 'and' to shifts result and false value
>>>>>>> generates a correct result.
>>>>>>>
>>>>>>
>>>>>> Thanks for your detailed and invaluable explanation!
>>>>>
>>>>> Thanks Eduard for detailed explanation. It looks like we could
>>>>> resolve this issue without adding too much complexity to verifier.
>>>>> Also, this code pattern above seems generic enough to be worthwhile
>>>>> with verifier change.
>>>>>
>>>>> Kuohai, please added detailed explanation (as described by Eduard)
>>>>> in the commit message.
>>>>>
>>>>
>>>> Sure, already added, the commit message and the change now is like this:
>>>>
>>>> ---
>>>>
>>>>     bpf: Fix a false rejection caused by AND operation
>>>>
>>>>     With lsm return value check, the no-alu32 version test_libbpf_get_fd_by_id_opts
>>>>     is rejected by the verifier, and the log says:
>>>>
>>>>     0: R1=ctx() R10=fp0
>>>>     ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
>>>>     0: (b7) r0 = 0                        ; R0_w=0
>>>>     1: (79) r2 = *(u64 *)(r1 +0)
>>>>     func 'bpf_lsm_bpf_map' arg0 has btf_id 916 type STRUCT 'bpf_map'
>>>>     2: R1=ctx() R2_w=trusted_ptr_bpf_map()
>>>>     ; if (map != (struct bpf_map *)&data_input) @ test_libbpf_get_fd_by_id_opts.c:29
>>>>     2: (18) r3 = 0xffff9742c0951a00       ; R3_w=map_ptr(map=data_input,ks=4,vs=4)
>>>>     4: (5d) if r2 != r3 goto pc+4         ; R2_w=trusted_ptr_bpf_map() R3_w=map_ptr(map=data_input,ks=4,vs=4)
>>>>     ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
>>>>     5: (79) r0 = *(u64 *)(r1 +8)          ; R0_w=scalar() R1=ctx()
>>>>     ; if (fmode & FMODE_WRITE) @ test_libbpf_get_fd_by_id_opts.c:32
>>>>     6: (67) r0 <<= 62                     ; R0_w=scalar(smax=0x4000000000000000,umax=0xc000000000000000,smin32=0,smax32=umax32=0,var_off=(0x0; 0xc000000000000000))
>>>>     7: (c7) r0 s>>= 63                    ; R0_w=scalar(smin=smin32=-1,smax=smax32=0)
>>>>     ;  @ test_libbpf_get_fd_by_id_opts.c:0
>>>>     8: (57) r0 &= -13                     ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3))
>>>>     ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
>>>>     9: (95) exit
>>>>
>>>>     And here is the C code of the prog.
>>>>
>>>>     SEC("lsm/bpf_map")
>>>>     int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode)
>>>>     {
>>>>         if (map != (struct bpf_map *)&data_input)
>>>>                 return 0;
>>>>
>>>>         if (fmode & FMODE_WRITE)
>>>>                 return -EACCES;
>>>>
>>>>         return 0;
>>>>     }
>>>>
>>>>     It is clear that the prog can only return either 0 or -EACCESS, and both
>>>>     values are legal.
>>>>
>>>>     So why is it rejected by the verifier?
>>>>
>>>>     The verifier log shows that the second if and return value setting
>>>>     statements in the prog is optimized to bitwise operations "r0 s>>= 63"
>>>>     and "r0 &= -13". The verifier correctly deduces that the the value of
>>>>     r0 is in the range [-1, 0] after verifing instruction "r0 s>>= 63".
>>>>     But when the verifier proceeds to verify instruction "r0 &= -13", it
>>>>     fails to deduce the correct value range of r0.
>>>>
>>>>     7: (c7) r0 s>>= 63                    ; R0_w=scalar(smin=smin32=-1,smax=smax32=0)
>>>>     8: (57) r0 &= -13                     ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3))
>>>>
>>>>     So why the verifier fails to deduce the result of 'r0 &= -13'?
>>>>
>>>>     The verifier uses tnum to track values, and the two ranges "[-1, 0]" and
>>>>     "[0, -1ULL]" are encoded to the same tnum. When verifing instruction
>>>>     "r0 &= -13", the verifier erroneously deduces the result from
>>>>     "[0, -1ULL] AND -13", which is out of the expected return range
>>>>     [-4095, 0].
>>>>
>>>>     As explained by Eduard in [0], the clang transformation that generates this
>>>>     pattern is located in DAGCombiner::SimplifySelectCC() method (see [1]).
>>>>
>>>>     The transformation happens as a part of DAG to DAG rewrites
>>>>     (LLVM uses several internal representations:
>>>>      - generic optimizer uses LLVM IR, most of the work is done
>>>>        using this representation;
>>>>      - before instruction selection IR is converted to Selection DAG,
>>>>        some optimizations are applied at this stage,
>>>>        all such optimizations are a set of pattern replacements;
>>>>      - Selection DAG is converted to machine code, some optimizations
>>>>        are applied at the machine code level).
>>>>
>>>>     Full pattern is described as follows:
>>>>
>>>>       // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A)
>>>>       // where y is has a single bit set.
>>>>       // A plaintext description would be, we can turn the SELECT_CC into an AND
>>>>       // when the condition can be materialized as an all-ones register.  Any
>>>>       // single bit-test can be materialized as an all-ones register with
>>>>       // shift-left and shift-right-arith.
>>>>
>>>>     For this particular test case the DAG is converted as follows:
>>>>
>>>>                         .---------------- lhs         The meaning of this select_cc is:
>>>>                         |        .------- rhs         `lhs == rhs ? true value : false value`
>>>>                         |        | .----- true value
>>>>                         |        | |  .-- false value
>>>>                         v        v v  v
>>>>       (select_cc seteq (and X 2) 0 0 -13)
>>>>                               ^
>>>>     ->                        '---------------.
>>>>       (and (sra (sll X 62) 63)                |
>>>>            -13)                               |
>>>>                                               |
>>>>     Before pattern is applied, it checks that second 'and' operand has
>>>>     only one bit set, (which is true for '2').
>>>>
>>>>     The pattern itself generates logical shift left / arithmetic shift
>>>>     right pair, that ensures that result is either all ones (-1) or all
>>>>     zeros (0). Hence, applying 'and' to shifts result and false value
>>>>     generates a correct result.
>>>>
>>>>     As suggested by Eduard, this patch makes a special case for source
>>>>     or destination register of '&=' operation being in range [-1, 0].
>>>>
>>>>     Meaning that one of the '&=' operands is either:
>>>>     - all ones, in which case the counterpart is the result of the operation;
>>>>     - all zeros, in which case zero is the result of the operation.
>>>>
>>>>     And MIN and MAX values could be derived based on above two observations.
>>>>
>>>>     [0] https://lore.kernel.org/bpf/e62e2971301ca7f2e9eb74fc500c520285cad8f5.camel@gmail.com/
>>>>     [1] https://github.com/llvm/llvm-project/blob/4523a267829c807f3fc8fab8e5e9613985a51565/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
>>>>
>>>>     Suggested-by: Eduard Zingerman <eddyz87 at gmail.com>
>>>>     Signed-off-by: Xu Kuohai <xukuohai at huawei.com>
>>>>
>>>> diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
>>>> index 640747b53745..30c551d39329 100644
>>>> --- a/kernel/bpf/verifier.c
>>>> +++ b/kernel/bpf/verifier.c
>>>> @@ -13374,6 +13374,24 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
>>>>         dst_reg->u32_min_value = var32_off.value;
>>>>         dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
>>>>
>>>> +       /* Special case: src_reg is known and dst_reg is in range [-1, 0] */
>>>> +       if (src_known &&
>>>> +               dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0 &&
>>>> +               dst_reg->smin_value == -1 && dst_reg->smax_value == 0) {
>>>
>>> do we need to check dst_reg->smin_value/smax_value here? They should not impact
>>> final dst_reg->s32_{min,max}_value computation, right?
>>
>> right, the check was simply copied from the old code, which only handled
>> the case where 64-bit range is the same as the 32-bit range
> 
> What if we do not have 64bit smin_value/smax_value check? Could you give more
> explanation here? In my opinion, deducing lower 32bit range should not care
> upper 32bit values.
>

I agree that for AND operation there's no need to check the upper 32bit. But
for other operations, we may need to consider the impact of upper 32bit overflow.

I added 64bit check in the old patch is to make sure the special case only works
when 64bit and 32bit ranges are the same since ranges are the same in the failure
verifier log.

>>
>>> Similarly, for later 64bit min/max and, 32bit value does not really matter.
>>>
>>
>> hmm, the 32-bit check is completely unnecessary.
>>
>>
>>>> + dst_reg->s32_min_value = min_t(s32, src_reg->s32_min_value, 0);
>>>> +               dst_reg->s32_max_value = max_t(s32, src_reg->s32_min_value, 0);
>>>> +               return;
>>>> +       }
>>>> +
>>>> +       /* Special case: dst_reg is known and src_reg is in range [-1, 0] */
>>>> +       if (dst_known &&
>>>> +               src_reg->s32_min_value == -1 && src_reg->s32_max_value == 0 &&
>>>> +               src_reg->smin_value == -1 && src_reg->smax_value == 0) {
>>>> +               dst_reg->s32_min_value = min_t(s32, dst_reg->s32_min_value, 0);
>>>> +               dst_reg->s32_max_value = max_t(s32, dst_reg->s32_min_value, 0);
>>>> +               return;
>>>> +       }
>>>> +
>>>>         /* Safe to set s32 bounds by casting u32 result into s32 when u32
>>>>          * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
>>>>          */
>>>> @@ -13404,6 +13422,24 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
>>>>         dst_reg->umin_value = dst_reg->var_off.value;
>>>>         dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
>>>>
>>>> +       /* Special case: src_reg is known and dst_reg is in range [-1, 0] */
>>>> +       if (src_known &&
>>>> +               dst_reg->smin_value == -1 && dst_reg->smax_value == 0 &&
>>>> +               dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0) {
>>>> +               dst_reg->smin_value = min_t(s64, src_reg->smin_value, 0);
>>>> +               dst_reg->smax_value = max_t(s64, src_reg->smin_value, 0);
>>>> +               return;
>>>> +       }
>>>> +
>>>> +       /* Special case: dst_reg is known and src_reg is in range [-1, 0] */
>>>> +       if (dst_known &&
>>>> +               src_reg->smin_value == -1 && src_reg->smax_value == 0 &&
>>>> +               src_reg->s32_min_value == -1 && src_reg->s32_max_value == 0) {
>>>> +               dst_reg->smin_value = min_t(s64, dst_reg->smin_value, 0);
>>>> +               dst_reg->smax_value = max_t(s64, dst_reg->smin_value, 0);
>>>> +               return;
>>>> +       }
>>>> +
>>>>         /* Safe to set s64 bounds by casting u64 result into s64 when u64
>>>>          * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
>>>>          */
>>>>
>>>>>>
>>>>>>> In my opinion the approach taken by this patch is sub-optimal:
>>>>>>> - 512 iterations is too much;
>>>>>>> - this does not cover all code that could be generated by the above
>>>>>>>    mentioned LLVM transformation
>>>>>>>    (e.g. second 'and' operand could be 1 << 16).
>>>>>>>
>>>>>>> Instead, I suggest to make a special case for source or dst register
>>>>>>> of '&=' operation being in range [-1,0].
>>>>>>> Meaning that one of the '&=' operands is either:
>>>>>>> - all ones, in which case the counterpart is the result of the operation;
>>>>>>> - all zeros, in which case zero is the result of the operation;
>>>>>>> - derive MIN and MAX values based on above two observations.
>>>>>>>
>>>>>>
>>>>>> Totally agree, I'll cook a new patch as you suggested.
>>>>>>
>>>>>>> [1] https://github.com/llvm/llvm-project/blob/4523a267829c807f3fc8fab8e5e9613985a51565/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp#L5391
>>>>>>>
>>>>>>> Best regards,
>>>>>>> Eduard
>>>>>>
>>>>>>
>>>>>
>>>>
>>
> 




More information about the Linux-security-module-archive mailing list