
SELinux in Android Lollipop and Marshmallow

Stephen Smalley
Trusted Systems Research
National Security Agency



2

Background
• At LSS 2014, we looked at how SELinux had been 

applied to protect the Android Trusted 
Computing Base (TCB).

• Starting with selective root daemon confinement 
in Android 4.4 KitKat.

• Moving toward full confinement and TCB 
protection.

• Culminated in the Android 5.0 Lollipop release.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER



3

Today's Talk
• Review final state of SELinux in Android 5.0 

Lollipop release and updates.
• Look at advances in SELinux expected in the 

upcoming Android 6.0 Marshmallow release.
• Discuss the state of Android & upstream SELinux.
• Summarize ongoing and future work.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER



4

• Officially announced mid-October 2014.
• Released to AOSP on November 4, 2014.
• First shipped on the Nexus 6, 9, and Player.
• Currently running on ~18% of active Android devices.
• First official Android release to ship with SELinux 

enforcing for all processes.
– Mandated by Android 5.0 CDD, tested by CTS.

Android 5.0 Lollipop



5

• All system services and apps are confined.
– Including root daemons.

• Only two domains are “unconfined”.
– kernel and init

• Even these two domains are not completely 
unrestricted by SELinux.

– TCB protection goals are applied universally.
– No domain/process is all-powerful.

SELinux in Android 5.0 Lollipop



6

• Nothing can map low memory or access /dev/
{k}mem.

• Only init can set sensitive kernel settings/policy.
• Only recovery can write to / or /system (the OS).
• Native services can only execute from / and /system.
• Only debuggerd can ptrace others.
• Apps cannot write to most netlink sockets.
• Apps cannot write to most service sockets.
• No reading/following untrusted symlinks.

Protecting the Android TCB via SELinux



7

• Android keystore
– Provides secure storage of keys.

• SELinux kernel-enforced guarantees:

– Nothing can ptrace the keystore.
– Nothing else can open /data/misc/keystore files.

• SELinux userspace access control:

– Keystore checks SELinux policy for client requests.
– Sensitive operations restricted via policy.

Service-specific Protection via SELinux



8

● Enforcing for all.
● Policy satisfies neverallow rules.
● Core system services running in their domains.
● Only init in the init domain.
● Only kernel threads in the kernel domain.
● Nothing running in recovery or su domains.
● No policy booleans.

Android 5.0 CTS SELinux Tests



9

● 5.0.1 through 5.1.1
● Carry forward all of the SELinux protections.
● 5.1 CTS has improved neverallow checker.

– Check all domains, not just AOSP domains.
– Back-ported from AOSP master.

Lollipop Updates



10

● Next major release of Android.
● 3 Developer Previews released.
● Final release expected Q3 2015.
● Includes SELinux changes made to AOSP 

master since Lollipop was forked.

Android 6.0 Marshmallow (“M”)



11

● ioctl whitelisting (see separate talk)
● Reinforcing Android multi-user
● Strengthening the Chrome sandbox
● Locking down the Binder
● Policy Hardening
● CTS enhancements

SELinux in Android 6.0 Marshmallow



12

● First introduced in 4.2 for tablets.
● Supported on phones starting with 5.0.
● Also the basis for restricted and managed profiles, 

including Android for Work.
● User identity encoded as part of the UID.
● Middleware enforces certain cross-user restrictions.
● Kernel enforces the usual DAC restrictions.

Android Multi-User



13

● Goal: Reinforce Android multi-user separation 
transparently, without complicating policy.

● Map user identity to unique MLS level (using 
categories), assign to app processes and files.

● MLS constraints prevent communications 
across different levels.
– except via Binder, which is mediated by middleware

SELinux and Android Multi-User



14

● Apps running for different users are 
automatically assigned different levels.

● SELinux blocks sending signals, accessing 
/proc/pid, opening app data files, or 
communicating via local sockets across levels.

● No per-user or per-app policy configuration 
required; just using MLS and categories.

SELinux and Android Multi-User (cont'd)



15

● Combines multi-process architecture with UID isolation.
● App service components can be declared with a 

process=”name” and an isolatedProcess=”true” attribute.
● Android will run such services in a separate process and 

UID from the main app.
● This process has no Android permissions and the usual 

DAC restrictions, i.e. cannot read or write the files of the 
main app unless they are world accessible.

The Chrome for Android sandbox



16

• Goal: Strengthen the sandbox beyond DAC.
• Isolated service processes already assigned their own 

domain, isolated_app.
• Removed specific accesses from isolated_app.

– No direct open of app data files.
– No GPU device access.
– No keystore permissions.

SELinux and the Chrome sandbox



17

• Binder is the central IPC primitive for Android.
• Binder has a top-level name service, known as the 

Binder context manager.
• On Android, this is the servicemanager process.
• The servicemanager checks SELinux policy for 

requests.
– add (register new service by name)
– find (look up a service by name)
– list (list all registered service names)

Locking down the Binder



18

• Lollipop shipped with add permission restricted.
• Marshmallow locks down find and list permissions.
• Prevents apps from looking up arbitrary binder 

services.
• If you cannot look up the service binder reference, you 

cannot call the service.
– Binder references are kernel-managed capabilities.

• Chrome sandbox / isolated_app restricted to only 
minimal required services.

Locking down the Binder (cont'd)



19

• Forced init to transition domains on exec.
– Separate domains added for helper programs and all 

services, even oneshot services.
• Locked down block device access.

– Protecting critical partitions from direct access.
– Limiting each domain to only needed partitions.

• Removed unconfined domain.
– Even init and kernel no longer use it.

• Many more neverallows.

Policy Hardening



20

• Test validity of all device SELinux configuration files.
– Correctness and inclusion of AOSP definitions.

• Test labeling of running CTS app and its files.

– Runtime state of device, not just configuration.
• Augmented testing of service domains.

– Reverse mapping, additional services, hostside.
• Test MLS attributes.

CTS Enhancements



21

• Android SELinux refreshed from upstream.
• Complete copy of upstream SELinux code imported 

under external/selinux, used for libsepol, checkpolicy.
• Work ongoing to synchronize upstream libselinux and 

Android fork.
• Policy tools imported into Android for use by Android 

developers (audit2allow, sesearch, seinfo).
– Breaks dependency on build host OS supporting 

Android SELinux policy version.

Android & Upstream SELinux



22

• > 60% of active Android devices are running a version of Android that has 
SELinux.
– 4.3 Jelly Bean (4.7%), 4.4 KitKat (39.3%), 5.x Lollipop (18.1%)

• In Android 4.4 and later, SELinux is always enabled and enforcing.
• As of 5.0 and later, Android has a more secure default policy than Linux 

distributions.
– Fully enforcing, only kernel and init “unconfined”, TCB protection goals.

• Yet Android has a much smaller and simpler policy than Linux distributions.
– Roughly 5% the number of rules, 10% the number of types.

• Could a similar policy be developed for Linux distributions?

SELinux in Android vs Linux distributions



23

• Enable apps to opt into stronger protections.
– Sandboxing, isolation, file protection

• Investigate new runtime permissions feature.
– when Android 6.0 source is released

• Improve SELinux tooling for Android.
• Further userspace policy enforcement.
• Kernel self-protection

Ongoing and Future Work



24

• Send email to seandroid-list-join@tycho.nsa.gov to 
join the public SE for Android mailing list.

• Private email just to our SE for Android team: 
seandroid@tycho.nsa.gov

• Source code: https://bitbucket.org/seandroid
• Project page: http://seandroid.bitbucket.org
• ToDo list: 

https://bitbucket.org/seandroid/wiki/wiki/ToDo

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

