Encrypting Android Devices

Linux Security Summit 2015

Paul Lawrence and Mike Halcrow, Google
Agenda

- Why encrypt?
- State of Play
- State of Play - issues
- Platform Requirements
- EXT4 Encryption
- EXT4 and F2FS Encryption (and beyond)
- Performance
- Future Directions
Why Encrypt/Mobile Adversarial Model

- Left in bar/stolen device
- Evil maid
- Internal vs. SD Card Storage
- Confidentiality vs. Integrity
State of Play

- Full disk encryption of userdata partition
- dm_crypt, AES-128 and CBC with ESSIV
- Unlock screen at boot tied to primary user’s account
- Unlock key linked to Trusted Execution Environment
- Some devices (Nexus 6,9) default encrypted, for most encryption optional
State of Play - Issues

- Unlock on boot, no functionality before that point
 - Accessibility
 - Incoming phone calls, messages
 - Alarm calls
- Only primary user can unlock
- Once unlocked, always unlocked
- Users/profiles have no separate keys
Platform Requirements

- Support diverse hardware from OEMs
- Provide strong encryption with short passwords
- Kernel diversity, age
- Flexibility - could not lock OEMs (or Google) to a specific filesystem (ext4)
Encryption Mode: ext4 encryption

- Initial implementation is as ‘drop-in’ replacement for dm_crypt
- Gives immediate benefits:
 - Secure user wipe
 - OTA updates easier
- Security
 - AES-256 in XTS mode
 - Encrypt file contents and file names
- Gives framework for future direction
Encryption Mode: ext4 encryption

- Non-user-specific folders encrypted with owner’s key
- User folders encrypted with per user key
- All keys installed at boot time
- Run time policy checks
- Uses fstab flag /fileencryption
- Uses unencrypted folder to store (encrypted) key material, replacing the metadata partition
EXT4 and F2FS Encryption

- EXT4 encryption upstream in kernel release 4.1
- F2FS based its per-file encryption on EXT4 encryption; in 4.2-rc
- Lots of copy-and-paste, suggesting a need for support for file-granular encryption in the VFS
 - Format for metadata and keys
 - Per-file random-access block encryption algorithms: key derivation, IVs, etc.
 - Mechanism for bounce pages on write path
 - Decryption in asynchronous read completion
Performance - Background

- Encryption has high impact on raw I/O numbers
- Encryption has little impact on day to day usage
 - e.g. Nexus 5 has 3% battery impact on streaming HD videos
- Occasionally we find an activity that reflects raw impact
 - e.g. starting one popular app requires 100MB of raw I/O and on a low powered ARM device adds five seconds to launch time due to 20MB/s decryption speed
Performance - Hardware

- For ARM devices we have
 - Software crypto
 - NEON accelerated software crypto
 - ARM v8 AES instructions (Nexus 9)
- Pure crypto hardware
Performance - ARMv8

<table>
<thead>
<tr>
<th>raw</th>
<th>sw crypto</th>
</tr>
</thead>
<tbody>
<tr>
<td>131,277,202</td>
<td>123,881,204</td>
</tr>
<tr>
<td>131,396,051</td>
<td>130,046,515</td>
</tr>
<tr>
<td>131,408,916</td>
<td>129,992,958</td>
</tr>
<tr>
<td>131,402,441</td>
<td>130,087,468</td>
</tr>
<tr>
<td>131,392,810</td>
<td>132,783,670</td>
</tr>
<tr>
<td>132,629,498</td>
<td>132,204,915</td>
</tr>
<tr>
<td>132,665,564</td>
<td>132,977,719</td>
</tr>
</tbody>
</table>
Throughput

<table>
<thead>
<tr>
<th></th>
<th>Read (MiB/s)</th>
<th>Write (MiB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unencrypted</td>
<td>240,000,000.00</td>
<td>55,000,000.00</td>
</tr>
<tr>
<td>FDE</td>
<td>66,000,000.00</td>
<td>37,000,000.00</td>
</tr>
<tr>
<td>FBE</td>
<td>120,000,000.00</td>
<td>37,000,000.00</td>
</tr>
</tbody>
</table>
Latency

- On a test device, open for read goes from 13 microseconds to 67 microseconds
- Peak activity of 200 file opens per second
- Worst case then is 54 microseconds * 200 opens for 10.8 milliseconds per second performance hit - 1% even if we ignore multiple cores
- As with throughput, easy to imagine an app that shows a much higher impact than this
Future Directions

- Integrity
 - If you don’t have data integrity, you very well may not have data confidentiality either
 - 2011 Attack against XML encryption in Apache Axis2: 1 byte of plaintext for every 14 rounds of ciphertext manipulations
 - Necessary properties: IND-CCA2, IND-CPA
- File system Metadata
 - Directory structure, file sizes, etc.
- VFS support
- More user features
Questions