
© 2014 IBM Corporation1

Linux Security Summit'14

August 18th, 2014

Anil Kurmus
kur@zurich.ibm.com - ak@kernel.build

@kurmus
IBM Research – Zurich

Quantifying and Reducing 
Kernel Attack Surface

mailto:kur@zurich.ibm.com
mailto:ak@kernel.build


© 2014 IBM Corporation2



© 2014 IBM Corporation3

The Linux kernel: All you (n)ever wanted



© 2014 IBM Corporation4

The Linux kernel: All you (n)ever wanted

RDS protocol



© 2014 IBM Corporation5

The Linux kernel: All you (n)ever wanted

RDS protocol

Perf events



© 2014 IBM Corporation6

The Linux kernel: All you (n)ever wanted

RDS protocol

Perf events

/proc/pid/mem



© 2014 IBM Corporation7

The Linux kernel: All you (n)ever wanted

RDS protocol

Perf events

/proc/pid/mem

Berkley Packet 
Filter (BPF)



© 2014 IBM Corporation8

The Linux kernel: All you (n)ever wanted

RDS protocol
CVE-2010-3904

Perf events
CVE-2013-2094

/proc/pid/mem
CVE-2012-0056

BPF
CVE-2010-4158



© 2014 IBM Corporation9

How popular are those features?



© 2014 IBM Corporation10

How popular are those features?



© 2014 IBM Corporation11

How popular are those features?



© 2014 IBM Corporation12

How popular are those features?



© 2014 IBM Corporation13

How popular are those features?



© 2014 IBM Corporation14

How popular are those features?

Large attack surface for no reason?



© 2014 IBM Corporation15

Research questions (1/2)

 Q1: Is it possible to precisely define the 
kernel attack surface? How can it be 

measured?



© 2014 IBM Corporation16

Research questions (2/2)

 Q2: Can we develop kernel protection 
mechanisms whose attack surface 

reduction is quantifiable? To what extent 
can these mechanisms be applied to 

commodity OSes in practice?



© 2014 IBM Corporation17

This talk

P1: Kernel Attack Surface Quantification 
(NDSS'13)



© 2014 IBM Corporation18

This talk

P1: Kernel Attack Surface Quantification 
(NDSS'13)

P2: Compile-time Kernel Tailoring
(HotDep'13, NDSS'13)



© 2014 IBM Corporation19

This talk

P1: Kernel Attack Surface Quantification 
(NDSS'13)

P2: Compile-time Kernel Tailoring
(HotDep'13, NDSS'13)

P3: Run-time Kernel Trimming
(Eurosec'11, DIMVA'14, CCS'14)



© 2014 IBM Corporation20

 Measuring
Kernel Attack Surface

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin 
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger 
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In: 
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf

 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time 
Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on 
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf


© 2014 IBM Corporation21

Existing approaches and limitations

 Typically in OS research: measure TCB size in source lines of code.
– Fiasco 15K SLOC; Minix 3 4K SLOC; Flicker 250 SLOC
– Linux 3.0 10M SLOC;

 However: 
– Source files that are not compiled? Configuration-dependent code?
– Loadable kernel modules (LKMs)? On-demand loadable kernel modules?
– Code that is not reachable from the system call interface? Initialization code?
– Code that is only reachable by privileged processes?



© 2014 IBM Corporation22

General Idea

 Attack surface ~= attacker-reachable code
– Idea: use reachability over kernel call graph
– Assumptions on the attacker and kernel? (security model)

 Measurements: code quality metrics
– SLOCs, CVEs, ...



© 2014 IBM Corporation23

Obtaining the attack surface: an example



© 2014 IBM Corporation24

Obtaining the attack surface: an example

FunctionsFunctions



© 2014 IBM Corporation25

Obtaining the attack surface: an example

Functions

CallsCalls

Functions



© 2014 IBM Corporation26

Obtaining the attack surface: an example



© 2014 IBM Corporation27

Obtaining the attack surface: an example

Functions
Entry

functions



© 2014 IBM Corporation28

Obtaining the attack surface: an example

Functions
Entry

functions

Entry
points
Barrier

functions



© 2014 IBM Corporation29

Obtaining the attack surface: an example

X

X

X



© 2014 IBM Corporation30

Obtaining the attack surface: an example



© 2014 IBM Corporation31

Attack surface measurement: AS1 with SLOC metric

10

20

50

200 50

20

20

Σ = 370 SLOC



© 2014 IBM Corporation32

Attack surface measurements: summary

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Σ = 370 SLOC



© 2014 IBM Corporation33

Attack surface measurements: summary

Security
model

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Σ = 370 SLOC

What security model?



© 2014 IBM Corporation34

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

Attacker controls 
unprivileged process



© 2014 IBM Corporation35

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

Attacker controls 
unprivileged process

Attacker controls 
unprivileged process



© 2014 IBM Corporation36

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable() 

attacker entry

partial a.s.

running kernel

Attacker controls 
unprivileged process

Attacker controls 
unprivileged process



© 2014 IBM Corporation37

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable() 

attacker entry

partial a.s.

running kernel

Drivers and 
non-ODL LKMs

are not considered

Drivers and 
non-ODL LKMs

are not considered

Attacker controls 
unprivileged process



© 2014 IBM Corporation38

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable() 
– Drivers and “other” LKMs 

attacker entry

partial a.s.

running kernel

Drivers and 
non-ODL LKMs

are not considered

Drivers and 
non-ODL LKMs

are not considered

Attacker controls 
unprivileged process



© 2014 IBM Corporation39

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable() 
– Drivers and “other” LKMs 
– (procfs, sysfs, debugfs)attacker entry

partial a.s.

running kernel

Drivers and 
non-ODL LKMs

are not considered

Drivers and 
non-ODL LKMs

are not considered

Attacker controls 
unprivileged process



© 2014 IBM Corporation40

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable() 
– Drivers and “other” LKMs 
– (procfs, sysfs, debugfs)

 Purpose: estimating the attack 
surface from an untrusted, 
unprivileged process

attacker entry

partial a.s.

running kernel

Drivers and 
non-ODL LKMs

are not considered

Drivers and 
non-ODL LKMs

are not considered

Attacker controls 
unprivileged process



© 2014 IBM Corporation41

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand 

loadable)

LKM
(driver)

LKM
(other)

StaticSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

LKMs cannot be
On-demand

loaded

Attacker controls 
unprivileged process



© 2014 IBM Corporation42

GenSec Linux Kernel Security Model

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand 

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel



© 2014 IBM Corporation43

GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand 

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel



© 2014 IBM Corporation44

GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

 Overestimates attack surface 
– attacker is privileged?
– not all LKMs can be loaded

 Purpose: 
– upper bound
– TCB point of view 

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand 

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel



© 2014 IBM Corporation45

Compile-time Kernel Tailoring

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin 
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger 
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In: 
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf


© 2014 IBM Corporation46

Making the kernel smaller

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)



© 2014 IBM Corporation47

Making the kernel smaller

Remove unnecessary features from the kernel 
by leveraging built-in configurability

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)



© 2014 IBM Corporation48

Make (menuconfig) your way to a smaller kernel

Now with
~5K features 

to choose from!
(on x86)



© 2014 IBM Corporation49

Don't take my word for it



© 2014 IBM Corporation50

Don't take my word for it

“many of the support infrastructure questions are very 
opaque, and I have no idea which of them any 
particular distribution actually depends on.”



© 2014 IBM Corporation51

Automatic Kernel-Configuration Tailoring



© 2014 IBM Corporation52

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case



© 2014 IBM Corporation53

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel



© 2014 IBM Corporation54

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel



© 2014 IBM Corporation55

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel



© 2014 IBM Corporation56

Resulting kernel



© 2014 IBM Corporation57

Resulting kernel



© 2014 IBM Corporation58

Resulting kernel

 How much attack surface reduction?

 



© 2014 IBM Corporation59

Selected results of the evaluation

 Typical server use case: LAMP



© 2014 IBM Corporation60

Results: tracing

 Httperf benchmark triggers new features
– Stabilizes at 495 features

 Skipfish: high coverage of the web application
– Goes beyond real-world workload

Tracing at “feature-granularity” converges quickly 

No new 
features



© 2014 IBM Corporation61

Results: attack surface reduction



© 2014 IBM Corporation62

Results: attack surface reduction



© 2014 IBM Corporation63

Results: attack surface reduction

85%



© 2014 IBM Corporation64

Results: attack surface reduction

85%



© 2014 IBM Corporation65

Results: attack surface reduction

85%



© 2014 IBM Corporation66

Results: attack surface reduction

85%
82%



© 2014 IBM Corporation67

Results: attack surface reduction

85%
82%



© 2014 IBM Corporation68

Run-time Kernel Trimming
 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time 

Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on 
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

 [CCS'14] Anil Kurmus, and Robby Zippel. "A Tale of Two Kernels: Towards Ending 
Kernel Hardening Wars with Split Kernel". In: Proceedings of the 2014 ACM Conference 
on Computer and Communications Security (accepted for publication). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf


© 2014 IBM Corporation69

Same idea, more attack surface reduction!

 The promises of run-time attack surface reduction:

 More granular
– E.g., function-level instead of configuration-level

 Application-specific
– Different application may exercise different kernel functionality

 Challenges:
– Performance overhead of run-time instrumentation
– False positives



© 2014 IBM Corporation70

The false positive challenge



© 2014 IBM Corporation71

The false positive challenge



© 2014 IBM Corporation72

Run-time kernel attack surface reduction



© 2014 IBM Corporation73

Run-time kernel attack surface reduction

Performance



© 2014 IBM Corporation74

Run-time kernel attack surface reduction

Performance False positives



© 2014 IBM Corporation75

Phase 1: Pre-learning

 Heuristic approach to improve performance

 Functions hit with frequency above a (dynamically computed) threshold are ignored

 Example:

Pre-learning reduces performance overhead



© 2014 IBM Corporation76

Phase 3: Analysis

 Group functions together to reduce false positives

 4 different modes
– No grouping

– File grouping

– Directory grouping

– Cluster grouping



© 2014 IBM Corporation77

Phase 4: Enforcement

 Can't terminate process
– False positives
– Shared kernel state

 Two choices:
– Logging (IDS)
– Hardened mode enforcement via split kernel [CCS'14]



© 2014 IBM Corporation78

Split Kernel overview

 Build kernel with and without hardening

 Chose at run-time whether to run in 
hardened mode

 Performance impact of hardening greatly 
reduced



© 2014 IBM Corporation79

Selected results of the evaluation

 Real-world workload on RHEL 6 development server
– Total observation time: 403 days



© 2014 IBM Corporation80

Attack surface reduction vs. convergence rate



© 2014 IBM Corporation81

Attack surface reduction vs. convergence rate

better



© 2014 IBM Corporation82

Attack surface reduction vs. convergence rate



© 2014 IBM Corporation83

Conclusion 



© 2014 IBM Corporation84

Conclusion

 The kernel attack surface can be quantified

 This can be used to evaluate the effectiveness of kernel attack surface reduction

 Kernel attack surface reduction is effective in preventing exploits:
– Compile-time Tailoring

• Prevents 285 CVEs out of 485.
– Run-time Trimming

• Prevents up to 184 out of 262 CVEs.
• In general, better ASR but lower convergence rate

 Both mechanism aim to be practical
– no significant overhead
– non-intrusive



© 2014 IBM Corporation85

References

 [Eurosec'11] Anil Kurmus, Alessandro Sorniotti, and Ruediger Kapitza. "Attack Surface 
Reduction For Commodity OS Kernels". In: Proceedings of the Fourth European 
Workshop on System Security. 2011.

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin 
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger 
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In: 
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time 
Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on 
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

 [CCS'14] Anil Kurmus, and Robby Zippel. "A Tale of Two Kernels: Towards Ending 
Kernel Hardening Wars with Split Kernel". In: Proceedings of the 2014 ACM Conference 
on Computer and Communications Security (accepted for publication). 2014.


