
Capsicum on Linux
David Drysdale
18 Aug 2014
Linux Security Summit

Google Confidential and Proprietary

Capsicum

● Pragmatic application
● of object-capability principles
● to UNIX
● and Linux in particular

Google Confidential and Proprietary

Capability-Based Security
● All object access needs a token: the capability

○ identifies the object
○ accompanying rights give allowed operations

Google Confidential and Proprietary

Capability-Based Security
● All object access needs a token: the capability

○ identifies the object
○ accompanying rights give allowed operations

● Avoid object naming & ambient authority
○ Prevent confused deputy attacks
○ Acquire capabilities

■ by inheritance
■ by creation (with subset of rights)
■ by passing

Google Confidential and Proprietary

Capability-Based Security
● All object access needs a token: the capability

○ identifies the object
○ accompanying rights give allowed operations

● Avoid object naming & ambient authority
○ Prevent confused deputy attacks
○ Acquire capabilities

■ by inheritance
■ by creation (with subset of rights)
■ by passing

● Note: completely different than POSIX.1e capabilities

Google Confidential and Proprietary

Capsicum Principles
● POSIX File Descriptor Behaviour

Google Confidential and Proprietary

Capsicum Principles
● POSIX File Descriptor Behaviour
● Hence Capsicum:

○ file descriptors as capabilities
○ with (new) fine-grained rights

■ policy co-located with code (ENOTCAPABLE)

Google Confidential and Proprietary

Capsicum Principles
● POSIX File Descriptor Behaviour
● Hence Capsicum:

○ file descriptors as capabilities
○ with (new) fine-grained rights

■ policy co-located with code (ENOTCAPABLE)
○ capability mode:

■ prevent minting of new file descriptors
■ lock down global namespaces (ECAPMODE)

Google Confidential and Proprietary

Example: tcpdump changes
+ cap_rights_init(&rights, CAP_READ);
+ if (cap_rights_limit(fileno(pcap_file(pd)), &rights) < 0)
+ error("unable to limit pcap descriptor");

+ cap_rights_init(&rights, CAP_SEEK, CAP_WRITE);
+ if (cap_rights_limit(fileno(pcap_dump_file(p), rights) < 0)
+ error("unable to limit dump descriptor");

+ if (cap_enter() < 0)
+ error("cap_enter: %s", pcap_strerror(errno));
 status = pcap_loop(pd, cnt, callback, pcap_userdata);

But only with -n option (no reverse-DNS lookup)

Google Confidential and Proprietary

Linux Implementation: Capabilities

● Rights associated with file descriptors
● Wrapper struct file object

Google Confidential and Proprietary

Linux Implementation: Capabilities

● Rights associated with file descriptors
● Wrapper struct file object
● Check rights on all FD->file conversions

○ Annotate fget() operations with required rights
○ Altered error behaviour (EBADF or ENOTCAPABLE)

● Unwrap on all FD->file conversions

Google Confidential and Proprietary

 fget Annotation Example

SYSCALL_DEFINE1(fchdir, unsigned int, fd)
{
 struct fd f = fdget_raw(fd);
 struct inode *inode;
 int error = -EBADF;

 if (!f.file)
 goto out;
 ...

SYSCALL_DEFINE1(fchdir, unsigned int, fd)
{
 struct fd f = fdgetr_raw(fd, CAP_FCHDIR);
 struct inode *inode;
 int error = -EBADF;

 if (IS_ERR(f.file)) {
 error = PTR_ERR(f.file);
 goto out;
 }
 ...

Google Confidential and Proprietary

Linux Implementation: Capabilities

● Rights associated with file descriptors
● Wrapper struct file object
● Check rights on all FD->file conversions

○ Annotate fget() operations with required rights
○ Altered error behaviour (EBADF or ENOTCAPABLE)

● Unwrap on all FD->file conversions
● Wrap new FDs from existing FDs on install

Google Confidential and Proprietary

Linux Implementation: Capabilities

● Rights associated with file descriptors
● Wrapper struct file object
● Check rights on all FD->file conversions

○ Annotate fget() operations with required rights
○ Altered error behaviour (EBADF or ENOTCAPABLE)

● Unwrap on all FD->file conversions
● Wrap new FDs from existing FDs on install
● Prevent non-relative openat (O_BENEATH)

Google Confidential and Proprietary

Linux Implementation: Capability Mode

● Prevent syscalls that access global namespaces
○ Use seccomp-bpf
○ New ECAPMODE errno

Google Confidential and Proprietary

Linux Implementation: Capability Mode

● Prevent syscalls that access global namespaces
○ Use seccomp-bpf
○ New ECAPMODE errno

● Wrinkles
○ Process-wide filter
○ Prevent non-relative filesystem access
○ Allow self-signal (kill / tgkill)?

Google Confidential and Proprietary

Process Descriptors

● Manipulating sub-processes is useful
○ compartmentalize into sandboxed sub-processes

Google Confidential and Proprietary

Process Descriptors

● Manipulating sub-processes is useful
○ compartmentalize into sandboxed sub-processes

● Add process descriptors
○ file descriptor wrapper for pid_t
○ pdfork/pdkill/pdwait4

Google Confidential and Proprietary

Process Descriptors

● Manipulating sub-processes is useful
○ compartmentalize into sandboxed sub-processes

● Add process descriptors
○ file descriptor wrapper for pid_t
○ pdfork/pdkill/pdwait4

● Avoid perturbing rest of application
○ No SIGCHLD on exit
○ Not visible to waitpid(-1,...)

Google Confidential and Proprietary

Capsicum Status
● Experimental in FreeBSD 9.x (2012)
● Included in FreeBSD 10.x (2014)

○ ~12 sandboxed utilities in tree
○ OpenSSH & Chromium out of tree

● Linux patchset proposed on LKML (2014)
https://lkml.org/lkml/2014/7/25/426
https://github.com/google/capsicum-linux
https://github.com/google/capsicum-test

