Google EXT4 Encryption

Harder, Better, Faster, Stronger
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The State of Linux Storage Encryption

e Block Device Encryption (dm-crypt, TrueCrypt)
o Great for single-tenant devices, problematic for the Cloud
e File-level encryption (eCryptfs)
o Useful for some multi-tenant devices (e.g., Chromium OS), many
Cloud applications
o eCryptfs issues: Correctness, performance, mixed benefits from
stacking
e Both lack strong encryption options (encryption with integrity)
o Necessary properties: IND-CCA2, IND-CPA
o Integrity data management introduces complexity
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Adversarial Models

e File level encryption primarily targets multi-tenant systems
e Extends run-time isolation protections to the storage layer to
protect against some (not all) online and offline attacks
o Total Security «—— Risk Mitigation
o Ring 0 compromise remains a tough scenario to counter
e Increasing case for Cloud security benefit with Intel SGX (a.k.a.
secure enclaves) coming in Skylake

o If only we could keep the keys for an app inside an enclave, yet still
usable by the kernel

m TRESOR (keys in debug registers) can help against cold boot attacks, but
that’s not the Cloud (multi-tenant) threat model
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Adversarial Model: Phase 1

e Single point-in-time permanent offline compromise of the block
device content, where loss of confidentiality of file metadata,
including the file sizes, names, and permissions, is tolerable

o AES-256-XTS

o Insecure against multiple point-in-time observations

o 256 bits should be enough for everybody
m Actually, 128 bits is, but enterprise policy has settled on 256

e No encryption metadata
e Patchset delivered to fsdevel for comment July 23rd



Google

Adversarial Model: Phase 2

e Occasional temporary offline compromise of the block device
content, where loss of confidentiality of file metadata, including the
file sizes, names, and permissions, is tolerable

o “Occasional”’: Adversary can read and/or manipulate the offline
ciphertext and/or authentication tags on the order of dozens of times

e AES-256-GCM

o Requires conformance with NIST SP 800-38D recommendations

e Encryption metadata

e Extension to patchset underway

o [|'ve got sibling files mostly working
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Adversarial Model: Phase 3

e (Qccasional temporary offline compromise of the block device
content, where loss of confidentiality of some file metadata,

including the file sizes, and permissions, is tolerable

o File names will be encrypted (with integrity)
m If we can figure out how to do it sanely
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Adversarial Model: Phase 4

e (Qccasional temporary offline compromise of the block device
content, where shared users on a mount are privy to other users’
file metadata, including the file sizes and permissions

o Directory inodes will be encrypted (with integrity) using a mount-
wide key
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Adversarial Model: Phase 5

e Something addressing the Integrity Measurement Architecture
(IMA) adversarial model, only a faster approach
o Per-page validation vs. entire-file validation

e For IMA, memory attacks are out-of-scope

o Another approach: reduce the measurements to encryption keys
m Persistent kernel compromise vs. Recoverable kernel compromise

o One-time measurement compared against the trusted list of
measurements at time of provision

o Sign the measurement for each file with the per-file key; store in
protector set

o Per-page validation occurs during active 1/O
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Encrypting With Integrity

e If you don’t have data integrity, you very well may not have data

confidentiality either

©)

2011 Attack against XML encryption in Apache Axis2: 1 byte of
plaintext for every 14 rounds of ciphertext manipulations

How to Break XML Encryption’
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cryption was standardized by W3C in 2002, and is
ated in XML frameworks of major commercial and
rce organizations like Apache, redhat, IBM, and
t. It is employed in a large number of major web-
plications, ranging from business communications,
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tributed applications. The use of XML as core
tax, e.g. for major business, e-commerce, financ
care, governmental and military applications, has
broad adoption of XML Encryption to protect ¢
data—especially, but not exclusively, in the cont:
Services. On the technical level, the XML Encryr
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Encrypting With Integrity

e HMAC over the ciphertext works
o Slow for now; will get faster with Skylake SHA1/SHA256 acceleration

e AES-GCM incorporates an integrity measurement (GHASH) into
the encryption and chaining process
o Benefits from CLMUL acceleration in current-generation Intel
hardware

m Sandy Bridge: 2.75 cycles/byte, Haswell: 1.1 cycles/byte, Skylake:
Faster...
o Berittle; IV reuse is “sudden death”
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Encrypting With Integrity

e Strong cryptographic integrity requires additional data per
segment of verifiable data
e Once we've crossed that bridge, we can also generate a unique IV
per block device segment offset
o Hard requirement for GCM
o Protection against injected plaintext attacks
e One-to-one mapping of plaintext blocks to ciphertext blocks no
longer holds
o Transactional semantics required for correctness
o Where can we best manage this complexity?
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Key Management and Protection

e eCryptfs model
o Per-file keys, wrapped and stored in metadata for each file
o Mount-wide key that wraps the per-file keys
o Userspace tools do higher-level key management functions
O

Complete reliance on kernel integrity
m  On multi-tenant systems, this is already an accepted risk
m Maybe we can do a little better
e KASLR + obfuscation of key material in ring 0 memory

e DMA attacks, etc. -- need more hardware support, or all crypto
happens in ring 3 under SGX
e FUSE redux, only with add’l context switch penalty
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Key Management and Protection

e EXT4 model

o Same as eCryptfs, only store metadata in xattr
m And it’s correct, fast, and reliable
o Per-mount keys no longer make sense
m  Wrapping key specifiers/policy in parent dir xattr?
m |OCTL-based?
m User session-based (e.g., policy in user session keyring)?
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Discussion

e Basic approach
o Hook EXT4 data path
o Bounce pages for write, BIO callback for read
o Sibling file for metadata
m Per-block metadata?
e Potential features
o In-place conversion
o Versioning
o Sub-file encryption contexts

e Distro integration
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Backup Slide: Q&A: Why aren’t you doing this in XFS or
BTRFS first?

A: Because Google is using EXT4 on Chrome OS and in its data
centers.

| can probably find some time to review encryption patches from the
XFS and/or BTRFS teams. Or maybe even talk to them.
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