
EXT4 Encryption
Harder, Better, Faster, Stronger

Non-confidential

Agenda

● State of Linux storage
encryption

Non-confidential

Agenda

● State of Linux storage
encryption

● The Cloud, the Device,
and Your Data:
Adversarial Models

Non-confidential

Agenda

● State of Linux storage
encryption

● The Cloud, the Device,
and Your Data:
Adversarial Models

● Encrypting with Integrity

Non-confidential

Agenda

● State of Linux storage
encryption

● The Cloud, the Device,
and Your Data:
Adversarial Models

● Encrypting with Integrity
● Key Management and

Protection

Non-confidential

Agenda

● State of Linux storage
encryption

● The Cloud, the Device,
and Your Data:
Adversarial Models

● Encrypting with Integrity
● Key Management and

Protection
● Discussion

Non-confidential

The State of Linux Storage Encryption

● Block Device Encryption (dm-crypt, TrueCrypt)
○ Great for single-tenant devices, problematic for the Cloud

● File-level encryption (eCryptfs)
○ Useful for some multi-tenant devices (e.g., Chromium OS), many

Cloud applications
○ eCryptfs issues: Correctness, performance, mixed benefits from

stacking
● Both lack strong encryption options (encryption with integrity)

○ Necessary properties: IND-CCA2, IND-CPA
○ Integrity data management introduces complexity

Non-confidential

Adversarial Models

● File level encryption primarily targets multi-tenant systems
● Extends run-time isolation protections to the storage layer to

protect against some (not all) online and offline attacks
○ Total Security ←→ Risk Mitigation
○ Ring 0 compromise remains a tough scenario to counter

● Increasing case for Cloud security benefit with Intel SGX (a.k.a.
secure enclaves) coming in Skylake
○ If only we could keep the keys for an app inside an enclave, yet still

usable by the kernel
■ TRESOR (keys in debug registers) can help against cold boot attacks, but

that’s not the Cloud (multi-tenant) threat model

Non-confidential

Adversarial Model: Phase 1

● Single point-in-time permanent offline compromise of the block
device content, where loss of confidentiality of file metadata,
including the file sizes, names, and permissions, is tolerable

● AES-256-XTS
○ Insecure against multiple point-in-time observations
○ 256 bits should be enough for everybody

■ Actually, 128 bits is, but enterprise policy has settled on 256
● No encryption metadata
● Patchset delivered to fsdevel for comment July 23rd

Non-confidential

Adversarial Model: Phase 2

● Occasional temporary offline compromise of the block device
content, where loss of confidentiality of file metadata, including the
file sizes, names, and permissions, is tolerable
○ “Occasional”: Adversary can read and/or manipulate the offline

ciphertext and/or authentication tags on the order of dozens of times
● AES-256-GCM

○ Requires conformance with NIST SP 800-38D recommendations
● Encryption metadata
● Extension to patchset underway

○ I’ve got sibling files mostly working

Non-confidential

Adversarial Model: Phase 3

● Occasional temporary offline compromise of the block device
content, where loss of confidentiality of some file metadata,
including the file sizes, and permissions, is tolerable
○ File names will be encrypted (with integrity)

■ If we can figure out how to do it sanely

Non-confidential

Adversarial Model: Phase 4

● Occasional temporary offline compromise of the block device
content, where shared users on a mount are privy to other users’
file metadata, including the file sizes and permissions
○ Directory inodes will be encrypted (with integrity) using a mount-

wide key

Non-confidential

Adversarial Model: Phase 5

● Something addressing the Integrity Measurement Architecture
(IMA) adversarial model, only a faster approach
○ Per-page validation vs. entire-file validation

● For IMA, memory attacks are out-of-scope
○ Another approach: reduce the measurements to encryption keys

■ Persistent kernel compromise vs. Recoverable kernel compromise
○ One-time measurement compared against the trusted list of

measurements at time of provision
○ Sign the measurement for each file with the per-file key; store in

protector set
○ Per-page validation occurs during active I/O

Non-confidential

Encrypting With Integrity

● If you don’t have data integrity, you very well may not have data
confidentiality either
○ 2011 Attack against XML encryption in Apache Axis2: 1 byte of

plaintext for every 14 rounds of ciphertext manipulations

Non-confidential

Encrypting With Integrity

● HMAC over the ciphertext works
○ Slow for now; will get faster with Skylake SHA1/SHA256 acceleration

● AES-GCM incorporates an integrity measurement (GHASH) into
the encryption and chaining process
○ Benefits from CLMUL acceleration in current-generation Intel

hardware
■ Sandy Bridge: 2.75 cycles/byte, Haswell: 1.1 cycles/byte, Skylake:

Faster...
○ Brittle; IV reuse is “sudden death”

Non-confidential

Encrypting With Integrity

● Strong cryptographic integrity requires additional data per
segment of verifiable data

● Once we’ve crossed that bridge, we can also generate a unique IV
per block device segment offset
○ Hard requirement for GCM
○ Protection against injected plaintext attacks

● One-to-one mapping of plaintext blocks to ciphertext blocks no
longer holds
○ Transactional semantics required for correctness
○ Where can we best manage this complexity?

Non-confidential

Key Management and Protection

● eCryptfs model
○ Per-file keys, wrapped and stored in metadata for each file
○ Mount-wide key that wraps the per-file keys
○ Userspace tools do higher-level key management functions
○ Complete reliance on kernel integrity

■ On multi-tenant systems, this is already an accepted risk
■ Maybe we can do a little better

● KASLR + obfuscation of key material in ring 0 memory
● DMA attacks, etc. -- need more hardware support, or all crypto

happens in ring 3 under SGX
● FUSE redux, only with add’l context switch penalty

Non-confidential

Key Management and Protection

● EXT4 model
○ Same as eCryptfs, only store metadata in xattr

■ And it’s correct, fast, and reliable
○ Per-mount keys no longer make sense

■ Wrapping key specifiers/policy in parent dir xattr?
■ IOCTL-based?
■ User session-based (e.g., policy in user session keyring)?

Non-confidential

Discussion

● Basic approach
○ Hook EXT4 data path
○ Bounce pages for write, BIO callback for read
○ Sibling file for metadata

■ Per-block metadata?
● Potential features

○ In-place conversion
○ Versioning
○ Sub-file encryption contexts

● Distro integration

Non-confidential

<EOP>

Mike Halcrow
mhalcrow@google.com

Ted Ts'o
tytso@google.com

Non-confidential

Backup Slide: Q&A: Why aren’t you doing this in XFS or
BTRFS first?

A: Because Google is using EXT4 on Chrome OS and in its data
centers.

I can probably find some time to review encryption patches from the
XFS and/or BTRFS teams. Or maybe even talk to them.

http://lists.openwall.net/linux-ext4/2010/01/04/8
http://lists.openwall.net/linux-ext4/2010/01/04/8
http://lists.openwall.net/linux-ext4/2010/01/04/8

