
CaitSith
a new type of rule based in-kernel access control

LinuxCon North America 2012 (San Diego)

Tetsuo Handa, NTT

2012/8/29-2012/8/31 (C) 2012 NTT Open Source Software Center

Who am I?

 A retired employed programmer

 My involvement with Linux

 2001.10-2003.3 Developing user space applications

 that run on Linux systems.

 2003.4-2012.3 Developing kernel mechanisms for

 improving security of Linux systems.

 2012.4- Providing user support service for

 troubleshooting Linux systems.

1

What do I speak today?

2

 Security, especially access control in kernel space.

 Subject(processes), Action, Object(resources)

 That's all. However, it is extremely difficult to develop rules

that match user's needs.

Subject Action Object

User space Kernel space

May I?

May I?

Yes.

No.

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

Players?

3

 Security mechanisms which come on my talk.

TOMOYO is a registered trademark of NTT DATA CORPORATION in Japan.

Structure of this presentation?

 Chapter 1 --- Introduction: Summarized description of what

has happened before CaitSith

 For users who are interested in in-kernel access control.

 Chapter 2 --- Things I experienced with continuing

enhancement of access control functionality

 For developers who are developing access control modules.

 Chapter 3 --- Things I experienced with continuing

enhancement of ease of use

 For users who are seeking for simpler in-kernel access

control modules.

 Chapter 4 --- CaitSith

 For users who are interested in my proposal.

4

Chapter 1

Introduction: Summarized description of

what has happened before CaitSith

5

Everyone's security varies?

6

 What people associate with the word "security" depends on

their skill levels and beliefs.

 Give people choices, rather than forcing the only one.

 My belief is that visualization is important.

 Many of today's security issues come from invisibleness.

 Traceability leads to satisfaction.

Attempts for doing access control in the kernel

space

7

 Threats are in the behavior of the user space.

 But, doing access control in the user space is problematic.

 It can be bypassed when deprived of control.

 Its level and granularity varies.

 Let's do access control in the kernel space, in addition to

access control in the user space.

 Although what in-kernel access control can do is limited, in-

kernel access control can provide a baseline restriction and

will be useful.

Mandatory Access Control(MAC)

8

 Implementation that does access control in the kernel space.

 It cannot be bypassed because it is done in the kernel space.

 Currently, SELinux, SMACK, TOMOYO and AppArmor are in

the Linux mainline kernel.

 They are all **whitelisting** approach which uses Linux

Security Modules (LSM) interface.

 They do access control from the point of view of **subjects**.

 can only

 on

Distributor's kernels enable some of them, but...

9

 Many people are still disabling SELinux.

Distributor's kernels enable some of them, but...

10

 Even AppArmor which was claimed to be easier than SELinux

is disabled.

Distributor's kernels enable some of them, but...

11

 What about SMACK?

 Not disabled yet, for SMACK is not enabled without user's

explicit configuration.

Distributor's kernels enable some of them, but...

12

 What about TOMOYO?

 Not disabled yet, for TOMOYO is not enabled without user's

explicit configuration.

Distributor's kernels enable some of them, but...

13

 Reasons to disable them?

 Fears to use without understanding their configuration.

 Fears to miss permissions in the whitelisting approach.

 There are a lot of documentation.

 Too long, didn't read.

 They are for developers, not for users.

"all or nothing" problem

14

 Ideally, access control is enforced on all subjects and all

objects.

 In reality, it is considered as "Well done" if access control is

enforced on some specific subjects.

 When troubles occur, they will have no choice but to **disable

entirely** unless they know how to configure policy and current

policy configurations.

Reasons why TOMOYO insisted on

manageability for users?

15

 No resource to distribute ready-made policy.

 TOMOYO has no background distributors compared to

SELinux(RedHat) and AppArmor(SUSE/Ubuntu).

 Unable to troubleshoot if ready-made policy is used.

 TOMOYO would follow the same way where SELinux and

AppArmor stray into.

 What people want to allow/deny varies.

 It is impossible to develop ready-made policy that can cover

everybody's needs.

 Have to disable upon troubles if there is only one switch.

 "all or nothing" problem

Problems with developing policy configuration

16

 An "access control" restricts access requests based on rules

defined beforehand.

 It is an implicit requirement that users can define rules

beforehand.

 However, to define rules beforehand, users have to be

familiar with internal structure of Linux systems.

 Not many users are familiar with Linux internal because it is

a world where they usually don't care.

 However, paying attention for burden of defining rules has

generally been viewed as unimportant.

 TOMOYO had been paying attention for this burden.

TOMOYO had been struggled in order to keep

TOMOYO enabled.

17

 Made possible to enable/disable on a per-action basis using

profiles.

 This allows users to choose the action coverage based on

their skills.

 Made possible to enable/disable on a per-domain basis using

profiles.

 This allows users to choose the subjects coverage based on

their skills.

TOMOYO had been struggled in order to keep

TOMOYO enabled.

18

 Made possible to handle policy violations interactively.

 This allows users to judge unexpected access requests on a

case-by-case basis.

 Made possible to understand all states using tree style domain

transitions.

 This allows users to understand what's going on.

Meanwhile, I received unexpected requests from

RHEL users...

19

 "I want to apply access control on specific resources (files),

rather than applying on specific processes."

 TOMOYO was allowing users to enable/disable access

control on a per-action basis and a per-domain basis, but

was not allowing users to enable/disable access control on a

per-file basis.

After all, did existing MAC implementations

respond to user's needs?

20

 User's needs are not always whitelisting nor from the point of

view of processes.

 Some wants to apply from the point of view of resources.

 Some are not interested in managing domains.

 These are limitations for TOMOYO.

 We might want to try a fundamental course-changing move.

 That's the trigger for developing CaitSith.

Chapter 2

Things I experienced with continuing

enhancement of access control

functionality

21

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

SAKURA (2003.4-)

22

 An attempt for protecting Linux systems without policy

management.

SAKURA

SAKURA

23

 I tried SELinux, but I soon gave up because SELinux was too

difficult to use.

 Can't we omit policy management by specializing for

protection from tampering?

 Code name: "Security Advancement Know-how Upon Read-

only Approach for Linux"

 Topics on SAKURA

 Protection from tampering via read-only mounting

 System-wide access restriction

 Spontaneous permission abandonment via modification of

user space programs

Protection from tampering via read-only

mounting

24

 Mounting filesystems as read-only wherever possible in order

to reduce the risk of tampering files.

 I modified the kernel to report pathnames which failed with -

EROFS error in order to help separating read-only

directories and writable directories.

 Mount all partitions except partitions which need to be

writable (e.g. /var and /tmp) read-only, and store read-only

partitions into read-only medium in order to protect from

direct tampering attacks (e.g. writing to block device files

which corresponds to read-only mounted partitions).

System-wide access restriction

25

 Mounting a writable filesystem over a read-only filesystem

ruins tamper-proof protection.

 Restrict namespace related actions (e.g. mount, chroot,

pivot_root) for system-wide.

 An example configuration looks like below.

 allow_mount devpts /dev/pts/ devpts 0x0

 allow_mount any / --remount 0x0

 allow_mount securityfs /sys/kernel/security/ securityfs 0x0

 allow_mount none /proc/sys/fs/binfmt_misc/ binfmt_misc

0x0

 allow_chroot /etc/avahi/

 allow_chroot /var/empty/sshd/

Note that the name of

processes are not

specified.

Spontaneous permission abandonment via

modification of user space programs

26

 To make system-wide access restriction more efficient, I added

spontaneous permission abandonment by appending a

original field to task_struct of Linux 2.4 kernels.

 Allow user space programs to discard permissions to call

execve(), chroot(), pivot_root(), mount() and a permission to

regain effective UID = 0 on a per-task_struct basis.

 Temporal discard which the permissions will be regained

after successful execve() request.

 Permanent discard which the permissions will not be

regained after execve() request.

 We could not afford resource to modify user space programs

and this feature was removed in TOMOYO 1.4.

=> But a more wider spontaneous permission abandonment

feature was added to Linux 3.5 as "seccomp mode 2".

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

SYAORAN (2004.10-)

27

 Tamper-proof filesystem for /dev partition.

SYAORAN

SYAORAN

28

 SAKURA made it possible to mount / partition as read-only, but

/dev cannot be mounted as read-only.

 Existing /dev filesystems (e.g. devfs and devtmpfs) allowed

modification of directory entries via requests from user

space.

 Tampering files in /dev partition is a severe problem.

 What happens if /dev/null has attributes of /dev/zero ?

 Code name: "Simple Yet All-important Object Realizing Abiding

Nexus"

 Topics on SYAORAN

 Tamper-proof filesystem for /dev partition

Tamper-proof filesystem for /dev partition

29

 I developed a dedicated filesystem for /dev by adding attribute

checking logic to tmpfs filesystem.

 By using this filesystem, we can enforce combination of

filenames and their attributes.

 For example, /dev/null always has char-1-3 and /dev/zero

always has char-1-5.

Tamper-proof filesystem for /dev partition

30

 Configuration file looks like below.

#filename perm owner group flags type major minor

pts 755 0 0 0 d

shm 755 0 0 0 d

null 666 0 0 0 c 1 3

zero 666 0 0 0 c 1 5

random 644 0 0 0 c 1 8

urandom 644 0 0 0 c 1 9

tty 666 0 0 0 c 5 0

tty0 600 0 0 12 c 4 0

tty1 600 0 0 12 c 4 1

Note that the permitted actions

(create/delete/chmod/chown/chgrp) are restricted

Managing policy is inevitable?

31

 By using SYAORAN for /dev and using SAKURA for wherever

possible, the risk of tampering files can be reduced.

 Although the combination of SAKURA and SYAORAN made

it impossible to tamper files stored into read-only medium,

storing into read-only medium also makes it impossible to

handle software updates.

 To make it possible to handle software updates while

protecting from tampering, we should consider also using

policy based protection.

=> Leads to TOMOYO.

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

TOMOYO (2003.7-)

32

 An attempt for implementing manageable policy.

TOMOYO

TOMOYO

33

 SELinux's policy is too difficult to use. Can't we develop

original policy that covers only what we need?

 Let's generate policy that allows only behavior of processes

which we ever observed.

 Code name: "Task Oriented Management Obviates Your Onus

on Linux"

 Topics on TOMOYO

 System-wide domain transition tracing function

 Access request tracing function on a per-domain basis

 Access request restricting function on a per-domain basis

System-wide domain transition tracing function

34

 Append a original field to task_struct

 of Linux 2.4 kernels.

 Form a tree style state transition

 using the fork()/execve() mechanism.

 Use each state in the tree as

 a domain.

Access request tracing function on a per-domain

basis

35

 Started as an access analysis tool.

 Trace open() and execve() requests using pathnames and

sort the output by domain as a key.

Caveat:

These screenshots include

other requests because

these are taken

using TOMOYO 1.8

on CentOS 6.3.

Access request tracing function on a per-domain

basis

36

Access request tracing function on a per-domain

basis

37

Access request restricting function on a per-

domain basis

38

 I attempted to generate SELinux's policy from the output.

 I gave up because I could not map TOMOYO's pathnames

into SELinux's labels.

 Instead, I added function to restrict access requests based on

the observed output

 At this time, I didn't distinguish requests for modifying

directory entries.

 In other words, the granularity was similar to DAC's rwx.

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

CERBERUS (2004.1-)

39

 One of advanced usages of TOMOYO, which protects from

login brute force attacks.

CERBERUS

CERBERUS

40

 SSH brute force attacks can break protection by MAC.

 Why not to enforce extra authentications?

 Code name: "Chained Enforceable Re-authentication Barrier

Ensures Really Unbreakable Security"

 Topics on CERBERUS

 Anti brute force technique via multiplexed user

authentication.

Anti brute force technique via multiplexed user

authentication.

41

 I noticed that we can deploy user authentications for multiple

times, by using TOMOYO's tree style state transition.

SSH server

Login shell

Some Domain

Some Domain

Some Domain

Some Domain

SSH login session, as well as other

programs, can form tree style

domain transition

Anti brute force technique via multiplexed user

authentication.

42

 I noticed that we can deploy user authentications for multiple

times, by using TOMOYO's tree style state transition.

Built-in

authentication

by SSH server

Restricted

login shell

Mandatory extra

authentication 1

Mandatory extra

authentication 2

Restricted

temporary shell

Normal shell

This stage can be passed

by brute force attack

These stages can enforce different

type of authentication

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

YUE (2004.1-)

43

 One of advanced usages of TOMOYO, which divides

privileges for administrative jobs.

YUE

YUE

44

 The root privileges are needed for doing administrative jobs.

 But only one root user can exist.

 Why not to divide privileges using TOMOYO's tree style

state transition?

 Code name: "Your User-role Enforcer"

 Topics on YUE

 Privilege division technique like Role Based Access Control

(RBAC)

Privilege division technique like Role Based

Access Control (RBAC)

45

 I noticed that we can divide privileges for administrative jobs

into arbitrary groups, by using TOMOYO's tree style state

transition.

Login program

(e.g. /bin/login)

Login shell

Even if the login shell is the same,

running different programs forms

different sub-tree

Some Domain

Some Domain

Some Domain

Some Domain

Therefore, in TOMOYO, any domain

at that moment represents the role

of the moment

Privilege division technique like Role Based

Access Control (RBAC)

46

 I noticed that we can divide privileges for administrative jobs

into arbitrary groups, by using TOMOYO's tree style state

transition.

Login program

(e.g. /bin/login)

Login shell

/bin/tcsh

Domain for

administrating httpd

Domain for

administrating ftpd

Grant permissions

needed for

managing ftpd

Grant permissions

needed for

managing httpd

/bin/bash

/bin/bash and /bin/tcsh are

examples for splitting subtree

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

TOMOYO 1.x (2005.11-)

47

 The origin of my various derivative works.

TOMOYO 1.x

TOMOYO 1.0 (2005.11-2006.3)

48

 A version which was published as a GPL open source

software with outcomes since 2003.4.

 SAKURA which handles restriction of namespace

manipulation on system-wide basis

 TOMOYO which handles restriction of access requests on a

per-domain basis

 SYAORAN which protects /dev partition

 CERBERUS which protects from login brute force attacks

 YUE which divides privileges for administrative jobs

TOMOYO 1.1 (2006.4-2006.9)

49

 User space programs behaves differently depending on

names.

 Gear towards more strictly restricting names which affects

program's behavior, in addition to restricting whether the

pathname is readable/writable/executable or not.

 Differentiate directory entry modification actions (i.e. mkdir,

rmdir, create, unlink, mksock, mkfifo, mkchar, mkblock,

link, symlink, rename, truncate) from "write" action.

 Made it possible to handle policy violations interactively.

 Give users a chance to handle unexpected events which

sometimes occur upon running software updater(e.g.

yum/apt).

TOMOYO 1.2 (2006.9-2006.11)

50

 Check invocation name (a.k.a. argv[0]) upon checking

program's execute permission.

 Because multi-call programs (e.g. busybox) behave

differently depending on the invocation name.

 Check current process's user ID etc. and file's owner ID etc.

upon checking permissions.

 Checking only pathname is not sufficient.

TOMOYO 1.3 (2006.11-2006.3)

51

 Made it possible to specify whether to enforce access control

or not, on a per-domain basis by introducing profile number

which takes an integer between 0 and 255.

 Profile number allowed users to use TOMOYO like

SELinux's targeted policy.

 Profile number also allowed users to use different

functionality on different programs.

 Made it possible to suppress/reset domain transitions as

needed.

 Support various patterns of domain transition.

TOMOYO 1.4 (2007.4-2007.9)

52

 Support pathname subtraction operator.

 Generally, filenames starting with a dot should be treated

differently.

 /var/www/html/*\-.*

 For example, differentiate /var/www/html/.htaccess from

/var/www/html/index.html

 Support x86_64 architecture.

 Started developing an LSM version called TOMOYO 2.x and

started challenges for inclusion into Linux mainline kernel.

 TOMOYO Linux project had a BoF session at Ottawa Linux

Symposium 2007.

TOMOYO 1.5 (2007.9-2008.3)

53

 Improved usability in order to differentiate TOMOYO from

AppArmor.

 At that time, TOMOYO was challenging for inclusion into

Linux mainline kernel. But since both TOMOYO and

AppArmor used pathnames in their policy configuration,

TOMOYO and AppArmor are regarded as "no need to

include both implementations into Linux mainline".

 I tried to show how attentive TOMOYO is.

 Made possible to run TOMOYO 1.x in parallel with SELinux.

 The label based MAC and the name based MAC play

complementary role.

 Thus, these should be able to run in parallel.

TOMOYO 1.6 (2008.4-)

54

 Various functionality/usability enhancements

 check argv[]/envp[] upon program execution

 support execute handler which intercepts program execution

request and validates/sanitizes argv[]/envp[] etc.

 This can silently terminate a process if the process issued

suspicious execve() request (e.g. /bin/sh without

appropriate argv[]/envp[])

 support stateful acl

 and many more

 This is the base code for RWXfilter and TOMOYO 2.2.

TOMOYO 1.7 (2009.9-)

55

 Current stable version.

 Checks not only pathnames but also various attributes passed

together.

 Changed module name of TOMOYO 1.x to CCSecurity since

TOMOYO 2.2 was included into Linux mainline kernel.

 Took occasion to review the division of the roles.

 Integrate system-wide access restrictions (SAKURA) into

a per-domain access restrictions (TOMOYO).

 Integrate access restrictions in /dev filesystem

(SYAORAN) into a per-domain access restrictions

(TOMOYO).

System-wide access restriction vs. A per-domain

access restriction

56

 Why did I treat system-wide access restriction and a per-

domain access restriction separately?

 Mainly enthusiasm for the code names.

 In order to restrict more precisely, why not to specify on a per-

domain basis rather than system-wide basis, for TOMOYO 1.x

can apply access restrictions to all processes?

 I thought (at that time) "Definitely".

 As a background of this decision, I was targeting for more finer

grained restriction in order to support LXC (pivot_root) users.

 Since TOMOYO 2.2 supported only TOMOYO (a per-

domain access restriction), I removed SAKURA (system-

wide access restriction) from TOMOYO 1.7.

Access restriction by filesystems vs. Access

restriction by domains

57

 Why did I have to restrict at filesystem layer? Now, TOMOYO

can check not only filenames but also file's attributes. Should I

continue maintaining /dev filesystem?

 I thought (at that time) "Not worth maintaining".

 I removed SYAORAN filesystem from TOMOYO 1.7, for

SYAORAN filesystem conflicts with udev approach.

TOMOYO 1.8 (2010.11-)

58

 Current latest version which supports Linux 2.6.27-3.5 kernels.

 Reviewed internal structures, removed redundant/legacy

functionality, renamed keywords in the policy syntax.

 Made it possible to preserve kernel ABI by introducing hooks

into fork() and exit() (instead of appending original fields to

task_struct which results in kernel ABI breakage).

 It became possible to treat like distributor's stock kernels.

 This is the base code for AKARI and CaitSith.

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

TOMOYO 2.x (2007.6-)

59

 The mainlined version of TOMOYO 1.x.

TOMOYO 2.x

TOMOYO 2.2 (2009.6-2010.10)

60

 A version which was mainlined in Linux 2.6.30 kernel.

 Only core function of TOMOYO 1.6 is implemented.

 Addition of missing LSM hooks for file related actions has

completed by Linux 2.6.33 kernel.

TOMOYO 2.3 (2010.10-2011.10)

61

 A version which was included into Linux 2.6.36-3.0 kernels.

 Major functionality regarding file related actions in TOMOYO

1.7 is implemented.

TOMOYO 2.4 (2011.10-2012.1)

62

 A version which was included into Linux 3.1 kernel.

 A version which has practically usable function.

 Major functionality regarding file related actions in TOMOYO

1.8 is implemented.

TOMOYO 2.5 (2012.1-)

63

 A version which is included into Linux 3.2 and later kernels.

 It is possible to backport this version up to Linux 2.6.33

kernel without modifying outside of security/tomoyo/

directory.

 Major functionality in TOMOYO 1.8 is implemented.

 Not yet implemented functionality

 execute handler

 Checking permission of incoming network packets.

 capability (Maybe seccomp mode 2 can substitute?)

 Checking permission of binary loader programs.

 Running with other LSM modules in parallel.

Things I achieved

64

 In-kernel access control which takes into account side effects

in the user space

 Preserving only "whether the file is

readable/writable/executable or not" is not sufficient.

 Firewall which checks various parameters which are

represented in the form of string or numeric values.

 Know all possible behaviors from boot to shutdown.

 Covers all processes

 Use task_struct for defining domains.

 Sense of safety that can cover all processes

 TOMOYO 1.8 is used in Android devices.

 Focuses on preventing from unwanted behaviors.

Things I struggled

65

 Implement functionality which will be useful, while keeping

psychological barrier as low as possible.

 First step(2005.11)

 I made it possible to enable/disable on a per-action basis.

Profiles

Things I struggled

66

 Second step(2006.11)

 Even though TOMOYO can apply restrictions on all

processes, user's skill are not catching up.

 I made it possible to enable/disable access restrictions on a

per-domain basis.

 This also made it

possible to use

build-up approach

by switching

profiles after

the policy is

developed.

Profiles

Things I struggled

67

 Third step(2011)

 Even if restricting only file related actions, it is too difficult to

switch all files to enforcing mode at once.

Profiles

Things I struggled

68

 Third step(2011)

 I considered profiles on a per-filename basis.

 I didn't implement because it will become too messy.

Profiles

Things I struggled

69

 Third step(2011)

 I considered blacklisting approach.

 I didn't implement because it conflicts access control

modes in the profiles

 The permissive mode is defined as "check access

requests but do not reject", but blacklisting will make the

permissive mode no longer permissive.

 It is impossible to apply blacklisting approach before

defining domains.

 How should TOMOYO handle blacklist when TOMOYO

automatically generated domains?

=> Leads to CaitSith

Chapter 3

Things I experienced with continuing

enhancement of ease of use

70

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

RWXfilter (2010.2-2010.4)

71

 The trigger for seriously considering Linux user's real opinions.

RWXfilter

A request from RHEL users.

72

 SELinux is too difficult for us to use. Please develop a single

function access control mechanism that can be loaded into

RHEL kernels as a loadable kernel module.

 I decided to implement a loadable kernel module that makes

use of LSM interface.

 Please allow users to apply access control on only specific

files.

 I decided to filter only "read/write/execute" actions in order

to minimize barrier for users.

 Code name: "Read/Write/Execute filter", or in short

"RWXfilter".

Dilemmas

73

 Existing MAC implementations assume "define domains first,

and then associate permissions/resources to domains".

 But it is difficult to apply such approach to all processes.

 But it ruins the value of MAC if there is a process which such

approach is not applied.

 But we cannot impose on users the burden of managing

every process only for applying access control on some

specific resources.

I reversed the viewpoints.

74

 Switch from "define domains first, and then associate

actions/resources" to "define resources first, and then

associate actions/domains".

 can only

 on

 can be

 by

only

Capability model Access control list model

Policy syntax for RWXfilter

75

 "Resource" "Access Control Mode"

 "Action1" by "Domain1 which action1 is allowed"

 "Action2" by "Domain2 which action2 is allowed"

 "Action3" by "Domain3 which action3 is allowed"

 "Resource" is TOMOYO's pathname representation.

 "Access Control Mode" is either "permissive" or "enforcing".

 "ActionX" is one of "read", "write" or "execute".

 "DomainX which actionX is allowed" is TOMOYO's

domainname representation.

An example of RWXfilter's policy

76

 /etc/shadow enforcing

 read by <kernel> /sbin/init /sbin/mingetty /bin/login

 read by <kernel> /usr/sbin/sshd

 This example will allow opening /etc/shadow for reading to

only processes which are in "<kernel> /sbin/init

/sbin/mingetty /bin/login" domain or "<kernel>

/usr/sbin/sshd" domain.

 This example will deny opening /etc/shadow for writing, for

access control mode for this pathname is "enforcing".

Consequence

77

 RWXfilter was shelved because I could not establish

commercial support.

 But RWXfilter triggered me to explorer the possibility of

access controls from different point of view.

=> Leads to CaitSith.

 I established an approach for appending another LSM module

as a loadable kernel module without disabling SELinux.

 I demonstrated Yama with TOMOYO 2.x at Linux Security

Summit held in conjunction with LinuxCon North America

2010 (Boston).

=> Leads to AKARI.

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

AKARI (2010.10-)

78

 The loadable kernel module version of TOMOYO 1.8.

AKARI

Origination

79

 TOMOYO 2.x remains unsupported in Fedora and RHEL

kernels.

 https://bugzilla.redhat.com/show_bug.cgi?id=542986

 Replacing the kernel package is a strong psychological barrier.

 Can't we somehow try TOMOYO more easily?

What did I think?

80

 There are functionality which cannot be implemented as a

loadable kernel module, for some hooks are not provided by

LSM.

 TOMOYO started as an access analysis tool.

 For analysis purpose, it would be acceptable that some

functionality cannot be implemented?

 Just try to get used to it.

=> I applied the approach which I established via RWXfilter to

TOMOYO 1.8.

Consequence

81

 We now can use major functionality of TOMOYO 1.8 on

Fedora and RHEL kernels.

 Especially useful for analysis purpose because AKARI is a

loadable kernel module similar to RWXfilter.

 http://akari.sourceforge.jp/

 Access

 Keeping

 And

 Regulating

 Instrument.

Chapter 4

CaitSith

82

SAKURA TOMOYO

SYAORAN

TOMOYO 1.x

CERBERUS
YUE

AKARI

RWXfilter

CaitSith

TOMOYO 2.x

idea feedback

code inheritance

SubDomain

AppArmor

SELinux

CaitSith (2012.4-)

83

 The most powerfully and flexibly configurable policy syntax

derived from 9 years of my experience.

CaitSith

Starting point for CaitSith

84

 Threats are in the behavior of the user space.

 But the threats are getting to shift to areas where in-kernel

access control cannot deal with.

 For example, mails/tweets by error exposed to or shared

by unexpected peers because of bugs in the user space

applications.

 It's a limitation for in-kernel access control.

 The "seccomp mode 2" became available in Linux 3.5.

 => Maybe we no longer need to go off the deep end at the

kernel side.

What is the way MAC needs to be?

85

 Things I experienced with continuing enhancement of

access control functionality:

 A per-domain basis access control can do better than

system wide access control, as long as access control is

applied on all domains.

=> If there is a domain which access control is not applied,

it becomes a hole which would not have existed if system

wide access control is used.

 In reality, there are usually domains which access control is

not applied.

=> But system wide access control alone is not sufficient.

What is the way MAC needs to be?

86

 Things I experienced with continuing enhancement of

access control functionality:

 There are users who want to restrict access using

blacklisting approach rather than whitelisting approach.

=> Blacklisting approach is difficult for TOMOYO because

TOMOYO automatically creates domain.

What is the way MAC needs to be?

87

 Things I experienced with continuing enhancement of

ease of use:

 There are users who want to restrict access from the point

of view of resources rather than that of processes.

=> Access controls which depends on "define domains first"

cannot handle this request.

 There are users who want to restrict access on specific

resources.

=> Access controls which depends on whitelisting cannot

handle this request.

What is the way MAC needs to be?

88

 My conclusion:

 It's time to break dependence on domains (Domain Type

Enforcement) and whitelisting.

 Let's consider from scratch.

How can I take advantage of both approaches?

89

 TOMOYO which was made from the point of view of

subjects and focused on enhancing functionality

 RWXfilter which was made from the point of view of **objects**

and focused on enhancing usability

 can only

 on

 can be

 by

only

 Capability model + Access control list model

=> Action check list model

Check if by

 and on

is requested.

Check if on

 is requested.

Check if by

 is requested.

Check if is

requested.

Why not to use Action as a key?

90

Grant or deny the request.

Grant or deny the request if

by is true.

Grant or deny the request if

on is true.

Grant or deny the request if

by and on are true.

My proposed syntax

91

 acl "Action" "Whether to check Action or not"

 audit "Audit pattern specifier"

 "Decision1" "Whether to use Decision1 or not"

 "Decision2" "Whether to use Decision2 or not"

 "Decision3" "Whether to use Decision3 or not"

 Specify Action as a key, and enumerate conditions as needed.

 Not using mandatory (positional) parameters

 All parameters (including domains) are optional.

 Split into two phases: "whether to check or not" and "whether

to grant/deny or not".

 Not using profiles because there is no need to specify

enabled/disabled.

Characteristic points of proposed syntax

92

 Supports both whitelisting approach and blacklisting approach.

 Supports both the point of view of subjects and the point of

view of objects, using actions as a key.

 Allows users to fully utilize TOMOYO's parameter validation

capabilities.

 Allows users to apply single function restrictions like RWXfilter.

 Allows users to easily apply system wide restriction because

action is the key.

=> Above topics are explained later using example policy.

How does policy file look like?

93

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

How does policy file look like?

94

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Header part defines quota

and groups

Body part defines rules

How does policy file look like?

95

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Version of policy syntax

Allow up to 16MB of kernel memory

for spooling audit logs

How does policy file look like?

96

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Allow spooling up to 0 logs when

matched "allow" line, up to 1024 logs

when matched "deny" line, up to

1024 logs when did not match

"allow" line nor "deny" line

Apply audit log quota

defined in audit[1] line

How does policy file look like?

97

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Checking priority when there are multiple acl

blocks with the same action

Name of action to check. In this example,

changing policy configuration

Additional conditions for checking whether

to check this action or not.

Unconditionally checked if omitted

How does policy file look like?

98

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Decision priority when there are multiple

decision lines within this acl block

How does policy file look like?

99

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Decision is either "allow" or "deny"

How does policy file look like?

100

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Additional conditions for deciding whether

to apply the decision or not.

The decision is unconditionally applied if

omitted

How does policy file look like?

101

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

This acl block defines below rules.

(1) Deny changing policy configuration if

current thread's user id or effective

user id is not 0

(2) Allow changing policy configuration if

/proc/self/exe is either

/usr/sbin/caitsith-loadpolicy or

/usr/sbin/caitsith-queryd

(3) Deny changing policy configuration

otherwise

How does audit log look like?

102

 Trying to modify policy configuration by bash will be denied.

echo '1000 acl modify_policy' > /proc/caitsith/policy

-bash: echo: write error: Operation not permitted

 And a denied log will be generated.

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Doesn't match

Doesn't match

Doesn't match

Doesn't match

Matches

How does audit log look like?

103

 Below is a denied log generated by trying to modify policy

configuration by bash.

 #2012/07/11 14:06:21# global-pid=3584 result=denied

priority=0 / modify_policy task.pid=3584 task.ppid=3582

task.uid=0 task.gid=0 task.euid=0 task.egid=0 task.suid=0

task.sgid=0 task.fsuid=0 task.fsgid=0

task.type!=execute_handler task.exe="/bin/bash"

task.domain="/usr/sbin/sshd"

This log is readable from /proc/caitsith/audit and is

saved by caitsith-auditd program

How does audit log look like?

104

 Below is a denied log generated by trying to modify policy

configuration by bash.

 #2012/07/11 14:06:21# global-pid=3584 result=denied

priority=0 / modify_policy task.pid=3584 task.ppid=3582

task.uid=0 task.gid=0 task.euid=0 task.egid=0 task.suid=0

task.sgid=0 task.fsuid=0 task.fsgid=0

task.type!=execute_handler task.exe="/bin/bash"

task.domain="/usr/sbin/sshd"

Result is one of "allowed" or

"denied" or "unmatched"
This log was generated by "0

acl modify_policy" block

How does audit log look like?

105

 Below is a denied log generated by trying to modify policy

configuration by bash.

 #2012/07/11 14:06:21# global-pid=3584 result=denied

priority=0 / modify_policy task.pid=3584 task.ppid=3582

task.uid=0 task.gid=0 task.euid=0 task.egid=0 task.suid=0

task.sgid=0 task.fsuid=0 task.fsgid=0

task.type!=execute_handler task.exe="/bin/bash"

task.domain="/usr/sbin/sshd"

These are variables within the access request.

These variables can be used as conditions as needed

How to update policy?

106

 Trying to modify policy configuration by caitsith-loadpolicy will

be allowed.

(echo '0 acl modify_policy'; echo '1 deny task.gid!=0') |

/usr/sbin/caitsith-loadpolicy

 But an allowed log will not be generated.

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Doesn't match

Doesn't match

Matches

How does user space daemon work?

107

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

Allow up to 1MB of kernel memory

for spooling access requests waiting

for interactive judgment when

caitsith-queryd program is running

How does user space daemon work?

108

 POLICY_VERSION=20120401

 quota memory audit 16777216

 quota memory query 1048576

 quota audit[1] allowed=0 denied=1024 unmatched=1024

 0 acl modify_policy

 audit 1

 1 deny task.uid!=0

 1 deny task.euid!=0

 100 allow task.exe="/usr/sbin/caitsith-loadpolicy"

 100 allow task.exe="/usr/sbin/caitsith-queryd"

 10000 deny

A denied log is generated and then access

request is spooled for interactive judgment. If

caitsith-queryd allows, the permission check

continues as if the access request did not

match the "deny" line. The access request is

denied otherwise

How does user space daemon work?

109

 Below is a query shown by caitsith-queryd program.

 #2012/07/11 14:06:21# global-pid=3584 result=denied

priority=0 / modify_policy task.pid=3584 task.ppid=3582

task.uid=0 task.gid=0 task.euid=0 task.egid=0 task.suid=0

task.sgid=0 task.fsuid=0 task.fsgid=0

task.type!=execute_handler task.exe="/bin/bash"

task.domain="/usr/sbin/sshd"

 Allow? ('Y'es/'N'o/'R'etry/'S'how policy/'A'dd to policy and

retry):

Identical with audit log, except that a prompt

line for manual decision is shown.

Characteristic points of proposed syntax

110

 Supports both whitelisting approach and blacklisting approach.

1000 acl execute task.exe="/usr/sbin/httpd"

 audit 1

 100 allow path="/var/www/cgi-bin/counter.cgi"

 200 deny

2000 acl execute task.exe="/usr/sbin/httpd"

 audit 1

 100 deny path="/bin/sh"

 200 allow blacklisting approach ends with an unconditional

"allow" line

whitelisting approach ends with an unconditional

"deny" line

Characteristic points of proposed syntax

111

 Supports both the point of view of subjects and the point of

view of objects, using actions as a key.

1000 acl execute task.exe="/usr/sbin/httpd"

 audit 1

 100 allow path="/usr/sbin/suexec"

 200 deny

2000 acl execute path="/usr/sbin/suexec"

 audit 1

 100 allow task.exe="/usr/sbin/httpd"

 200 deny

/usr/sbin/httpd can execute only /usr/sbin/suexec

/usr/sbin/suexec can be execute by only

/usr/sbin/httpd

Characteristic points of proposed syntax

112

 Supports both the point of view of subjects and the point of

view of objects, using actions as a key.

1000 acl inet_stream_listen task.exe="/usr/sbin/sshd"

 audit 1

 100 allow port=22

 200 deny

2000 acl inet_stream_listen port=22

 audit 1

 100 allow task.exe="/usr/sbin/sshd"

 200 deny

/usr/sbin/sshd can listen to TCP sockets at only port 22

TCP socket's port 22 can be listened by only

/usr/sbin/sshd

Characteristic points of proposed syntax

113

 Allows users to fully utilize TOMOYO's parameter validation

capabilities.

0 acl ioctl path.type=char path.dev_major=10

path.dev_minor=232

 audit 1

 100 deny task.exe!="/usr/libexec/qemu-kvm"

 200 allow

cmd=@PERMITTED_DEV_KVM_IOCTL_CMD_NUMBERS

 300 deny

Check ioctl requests on /dev/kvm device

Only /usr/libexec/qemu-kvm can issue ioctl

requests on /dev/kvm device

Only ioctl command numbers defined by "number_group

PERMITTED_DEV_KVM_IOCTL_CMD_NUMBERS" lines

in the header part of policy file are permitted

Characteristic points of proposed syntax

114

 Allows users to apply single function restrictions like RWXfilter.

1000 acl inet_stream_connect

 audit 1

 100 deny port!=@PERMITTED_INET_CONNECT_PORTS

 100 allow

ip=@PERMITTED_INET_CONNECT_ADDRESSES

 200 deny

Check TCP socket's

connect requests
Only port numbers defined by

"number_group

PERMITTED_INET_CONNECT_P

ORTS" lines are permitted

Only IPv4/IPv6 addresses defined by "ip_group

PERMITTED_INET_CONNECT_ADDRESSES" lines are permitted

Characteristic points of proposed syntax

115

 Allows users to easily apply system wide restriction because
action is the key.

100 acl mount

 audit 1

 0 deny task.exe!="/bin/mount"

 1 allow target="/proc/" fstype="proc" flags=0x0

 1 allow target="/sys/" fstype="sysfs" flags=0x0

 1 allow target="/dev/pts/" fstype="devpts" flags=0x0

 1 allow target="/dev/shm/" fstype="tmpfs" flags=0x0

 1 allow target="/" fstype="--remount" flags=0x1

 1 allow target="/" fstype="--remount" flags=0x400

 2 deny

Only /bin/mount can issue mount requests

How to use CaitSith?

116

 Installation steps are almost same with those of TOMOYO 1.8.

 Because CaitSith shares same kernel patches used by

TOMOYO 1.8.

 Applying kernel patches is easy because most of hooks are

already embedded into LSM.

 Usage steps are

(1) Define acl blocks you want to check

(2) Edit decision lines in the blocks from audit logs

(3) Terminate the blocks with unconditional deny (or allow) line

Please try CaitSith.

117

 http://caitsith.sourceforge.jp/

 Characteristic

 action

 inspection

 tool.

 See

 if

 this

 helps.

